Computations of Total Sediment Discharge Niobrara River Near Cody, Nebraska

By B. R. COLBY and C. H. HEMBREE

GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1357

Prepared as part of a program of the Department of the Interior for Development of the Missouri River basin

UNITED STATES DEPARTMENT OF THE INTERIOR

Douglas McKay, Secretary

GEOLOGICAL SURVEY

W. E. Wrather, Director

CONTENTS

Page
Abstract 1
Introduction 2
Personnel and acknowledgments 3
Purpose and scope of the investigation 4
Sediment and streamflow records 5
Definitions 5
Ford section 7
Gaging-station section 7
Distributions in the cross section 10
Particle sizes of the sediments 20
Contracted section 26
Discharge of suspended sediment 26
Distributions in the contracted section 29
Particle sizes of the sediments 34
Normal sections C-1 to C-10 34
Distributions in the cross sections 39
Particle sizes of the sediments 39
Unmeasured sediment discharge 45
Differences in suspended-sediment discharge at contracted and at normal sections 45
Computations of sediment discharge from formulas 55
The Schoklitsch formula 55
The Du Boys formula 57
The Straub formula 60
The Einstein procedure 62
Modified procedure based on Einstein's formulas 66
Computation of 68
Relationships involving z_{1}, z_{3}, and k 69
Trial-and-error computation of z 77
Computation of shear velocity 83
Computation of the intensity of bed-load transport 83
Necessary basic data 89
Sample computation of total sediment discharge 91
Computed total sediment discharge 98
Evaluation of the procedure 106
Conclusions 111
Literature cited 114
Symbols 115
Tables of basic data 120

ILLUSTRATIONS

[Plates in pocket]

Figure 1. Outline map of Niobrara River near Cody, Nebr 82. Channel cross section at the ford section for streamflowmeasurements and sediment sampling9
3. A view downstream toward the ford section and the gaging station 9
4. Lateral distribution of depth, velocity, and concentration of suspended sediment, gaging-station section 11
5. Longitudinal profiles of the water surface of a reach, April 22, 1953. 12
6. Vertical distributions at gaging-station section, March 3, 1950 13
7. Vertical distributions at gaging-station section, April 27, 1951 14
8. Vertical distributions at gaging-station section, March 30, 1952 15
9. Relation of $(d-y) / y$ plotted against concentration for different size ranges, gaging-station section, March 3, 1950 17
10. Relation of $(d-y) / y$ plotted against concentration for different size ranges, gaging-station section, April 27, 1951 18
11. Relation of $(d-y) / y$ plotted against concentration for different size ranges, gaging-station section, Novem- ber 8, 1949 19
12. Relation between z_{1} as determined graphically from point-integrated samples and the settling velocity 21
13. Computed average analysis of 50 sets of bed-material samples at the gaging-station section 22
14. Graph of first quartile size of bed material plotted against water temperature for all sections 24
15. Graph of particle sizes of bed material at gaging-station section plotted against streamflow 25
16. A view downstream from the upper end of the natural flume 27
17. A view upstream toward the sampling point in the natural flume 27
Page
Figure 18. Profile of contracted section 28
19. Duration curve of daily suspended-sediment discharge in the contracted section, from April 9, 1948, to Sep- tember 30, 1952 30
20. Relationship of daily average suspended-sediment discharge to daily average water discharge at con- tracted section from April 1948 through September 1952. 31
21. Lateral distribution of velocity and concentration of sus- pended sediment, contracted section 32
22. Vertical distributions at contracted section 33
23. Median particle size plotted against suspended-sediment discharge, contracted section 35
24. Profiles of normal sections C-1 to C-10, June 14, 1951 37
25. A view upstream toward normal section C-2 38
26. A view upstream toward normal section C-6 38
27. Normal sections $\mathrm{C}-3$ and $\mathrm{C}-4$ and adjacent reach 39
28. Lateral distribution of depth, velocity, and concentration of suspended sediment, normal section C-2 40
29. Lateral distribution of depth, velocity, and concentration of suspended sediment, normal section C-6. 41
30. Vertical distributions at section C-2, May 20, 1953 42
31. Vertical distributions at section C-6, May 20, 1953. 43
32. Computed average analyses of bed-material samples at normal sections $\mathrm{C}-2, \mathrm{C}-6$, and $\mathrm{C}-1$ to $\mathrm{C}-10$ 44
33. Ratio of measured sediment discharge at a normal section to sediment discharge at the contracted section plotted against water discharge 51
34. Ratio of measured sediment discharge at a normal section to sediment discharge at the contracted section plotted against sediment discharge at the contracted section 52
35. Ratio of measured sediment discharge at a normal section to sediment discharge at the contracted section plotted against water temperature 53
36. Comparison of computed sediment discharge from the Schoklitsch formula at a normal section to measured sediment discharge of particles larger than 0.125 mm at the contracted section. 58
37. Comparison of computed sediment discharge from a form of the Du Boys formula at a normal section to meas- ured sediment discharge at the contracted section 61
38. Comparison of computed sediment discharge from the Straub formula at a normal section to measured sedi- ment discharge of particles larger than 0.125 mm at the contracted section 63
39. Comparison of computed total sediment discharge from the Einstein procedure at sections $\mathrm{C}-1$ to $\mathrm{C}-10$ to measured sediment discharge at the contracted section. 67
40. Graph of z_{1} plotted against z_{m} 71
41. Graph of z_{1} adjusted for fall velocity plotted against shear velocity 72
42. Graph of z_{3} plotted against z_{m}. 73
43. Graph of z_{3} adjusted for fall velocity plotted against shear velocity 74
Page
Figure 44. Correction x interms of $\mathrm{k}_{\mathrm{s}} / \mathrm{C}_{\boldsymbol{z}}$. 76
45. Vertical distribution of streamflow 80
46. Approximate relation of z_{2} to the ratio of suspended- sediment discharge in the sampling zone to bed-load discharge 81
47. Relation between ξ and D / X for the geometric mean of three ranges of particle sizes 0.062 to 0.125 mm , 0.125 to 0.250 mm , and 0.250 to 0.500 mm 86
48. Approximate relation between z for sediment in size range of 0.125 to 0.250 mm and slope of the $\boldsymbol{\xi}$ plotted against D / X curve 87
49. Comparison of computed total sediment discharge from modified Einstein procedure with measured sediment discharge at the contracted section 99
50. Comparison of computed total sediment discharge from modified Einstein procedure based on $z_{1}{ }^{\prime} s$ and z_{4} 's with measured sediment discharge at the contracted section. 104
51. Variation of fall velocity with temperature 105
TABLES
Page
Table 1. Streamflow measurements, Niobrara River near Cody, Nebr., ford section 120
2. Sediment-discharge measurements, ford section. 120
3. Particle-size analyses of suspended sediment, ford section. 121
4. Streamflow measurements, Niobrara River near Cody, Nebr., gaging-station section 121
5. Sediment-discharge measurements, gaging-station section 124
6. Particle-size analyses of suspended sediment, point- integrated samples, gaging-station section. 128
7. Particle-size analyses of suspended sediment, depth- integrated samples, gaging-station section. 138
8. Particle-size analyses of stream-bed material, gaging- station section 142
9. Sediment-discharge measurements; contracted section 143
10. Temperature (${ }^{\circ} \mathrm{F}$) of water, Niobrara River near Cody, October 1948 to September 1953 145
11. Particle-size analyses of suspended sediment, point- integrated samples, contracted section 149
12. Particle-size analyses of stream-bed material, contrac- ted section 158
13. Particle-size analyses of suspended sediment, depth- integrated samples, contracted section 159
14. Profiles of normal section $C-1$ 162
15. Profiles of normal section $\mathrm{C}-2$. 163
Page
Table 16. Profiles of normal section $\mathrm{C}-3$. 165
17. Profiles of normal section $\mathrm{C}-4$. 166
18. Profiles of normal section $\mathrm{C}-5$ 167
19. Profiles of normal section $\mathrm{C}-6$ 169
20. Profiles of normal section $C-7$ 170
21. Profiles of normal section $C-8$ 171
22. Profiles of normal section $\mathrm{C}-9$ 173
23. Profiles of normal section $\mathbf{C}-10$ 175
24. Water-surface altitudes at normal sections $\mathrm{C}-1$ to $\mathrm{C}-10$ 36
25. Streamflow measurements, Niobrara River near Cody, Nebr., normal sections C-2 and C-6 177
26. Particle-size analyses of stream-bed material, normal sections $\mathrm{C}-1$ to $\mathrm{C}-10$ 178
27. Comparison of particle-size analyses of depth-integrated samples 184
28. Particle-size analyses of suspended sediment, point- integrated samples, sections C-2 and C-6 186
29. Sediment-discharge measurements, normal sections $\mathbf{C - 2}$ and C-6. 187
30. Comparison of sediment discharge measurements at nor- mal sections to sediment discharge measurements at the contracted section, Niobrara River near Cody 46
31. Average particle size of sediments of the Niobrara River near Cody. 54
32. Comparison of computed bed-material discharge from three formulas with measured sediment discharge at the contracted section 57
33. Comparison of computed sediment discharge from Ein- stein procedure applied to sections $\mathrm{C}-1$ to $\mathrm{C}-10$ and to section C-2 with measured sediment discharge at the contracted section 65
34. Comparison of computed sediment discharge from modi- fied Einstein procedure applied to normal sections with measured sediment discharge at contracted section. 101
35. Comparison of computed sediment discharge from point- integrated samples with measured sediment discharge at contracted section 103
36. Comparison of measured sediment discharges at the con- tracted section with computed total sediment dis- charges from the modified Einstein procedure and variations of it 106
37. Percentage comparison between sediment discharge com- puted by the modified Einstein procedure and measured sediment discharge at the contracted section. 108

COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE, NIOBRARA RIVER NEAR CODY, NEBRASKA

By B. R. Colby and C. H. Hembree

Abstract

A natural chute in the Niobrara River near Cody, Nebr., constricts the flow of the river except at high stages to a narrow channel in which the turbulence is sufficient to suspend nearly the total sediment discharge. Because much of the flow originates in the sandhills area of Nebraska, the water discharge and sediment discharge are relatively uniform.

Sediment discharges based on depth-integrated samples at a contracted section in the chute and on streamflow records at a recording gage about 1, 900 feet upstream are available for the period from April 1948 to September 1953 but are not given directly as continuous records in this report. Sediment measurements have been made periodically near the gage and at other nearby relatively unconfined sections of the stream for comparison with measurements at the contracted section.

Sediment discharge at these relatively unconfined sections was computed from formulas for comparison with measured sediment discharges at the contracted section. A form of the Du Boys formula gave computed tonnages of sediment that were unsatisfactory. Sediment discharges as computed from the Schoklitsch formula agreed well with measured sediment discharges that were low, but they were much too low at measured sediment discharges that were higher. The Straub formula gave computed discharges, presumably of bed material, that were several times larger than measured discharges of sediment coarser than 0.125 millimeter. All three of these formulas gave computed sediment discharges that increased with water discharges much less rapidly than the measured discharges of sediment coarser than 0.125 millimeter.

The Einstein procedure when applied to a reach that included 10 defined cross sections gave much better agreement between computed sediment discharge and measured sediment discharge than did any one of the three other formulas that were used. This procedure does not compute the discharge of sediment that is too small to be found in the stream bed in appreciable quantities. Hence, total sediment discharges were obtained by adding computed discharges of sediment larger than 0.125 millimeter to measured discharges of sediment smaller than 0.125 millimeter. The size distributions of the computed sediment discharge compared poorly with the size distributions of sediment discharge at the contractedsection. Ten sediment discharges computed from the Einstein procedure as applied to a single section averaged several times the measured sediment discharge for the contracted section and gave size distributions that were unsatisfactory.

The Einstein procedure was modified to compute total sediment discharge at an alluvial section from readily measurable field data. The modified procedure uses measurements of bed-material particle sizes, suspended-sediment concentrations and particle sizes from depth-integrated samples, streamflow, and water temperatures. Computations of total sediment discharge were made by using this modified procedure, some for the section at the gaging station and some for each of two other relatively unconfined sections. The size distributions of the computed and the measured sediment discharges agreed reasonably well. Major advantages of this modified procedure include applicability to a single section rather than to a reach of channel, use of measured velocity instead of water-surface slope, use of depth-integrated samples, and apparently fair accuracy for computing both total sediment discharge and approximate size distribution of the sediment. Because of these advantages this modified procedure is being further studied to increase its accuracy, to simplify the required computations, and to define its limitations.

In the development of the modified procedure, some relationships concerning theories of sediment transport were reviewed and checked against field data. Vertical distributions of suspended sediment at relatively unconfined sections did not agree well with theoretical distributions. The universal constant for turbulent exchange was computed from vertical velocity curves and was found to vary widely. Also, the computed shear velocity seemed to have little practical relation to the vertical distribution of sediment.

INTRODUCTION

The general study of fluvial sediments of the Niobrara River basin is a part of the program of the Department of the Interior for the development of the Missouri River basin. The investigation on the Niobrara River near Cody, Nebr., was started by the Geological Survey at the request of the Bureau of Reclamation. A sediment station was needed at a contracted section in a narrow flume that was cut naturally in clayey siltstone. Measurements of sediment discharge were made not only in the natural flume as requested but also, for comparison, at nearby sections. They were begun in an exploratory way in December 1947 and have been on a more systematic basis since April 1948.

In May 1951 personnel of the Bureau of Reclamation and of the Geological Survey jointly located 10 additional cross sections and agreed on field operations to obtain data for computations of total sediment discharge. These data were to be studied jointly, and a report was to be published by the Geological Survey to include "the practicability of a procedure for combining measurements of suspended-sediment discharge and use of Einstein's or other formulas for determination of total sediment discharge." This report was prepared to meet that objective on the basis of data collected prior to October 1, 1953.

The Niobrara River, like other streams that drain the sandhills region of Nebraska, has very uniform flow and transports sediments that are mostly in the range of sand sizes. Near Cody the Niobrara River during recent years has had a flow between 250 and 400 cfs perhaps 75 percent of the time. (See fig. 20.) Discharge of suspended sediment through the chute near Cody is relatively uniform, ranging between 500 and 2, 000 tons per day much of the time. (See fig. 19.) Except at high flows the sediment is sand that comes mainly from the sandhills areas. Much of this sand is transported on or near the stream bed except at laterally confined sections of the channel. As depth-integrating samplers usually do not sample closer to the stream bed than 0.3 foot, much of the sand load is not collected in depth-integrated samples. In the natural flume of the Niobrara River near Cody, samples are collected where the river is constricted to a width of about 11 feet. At this section, streamflow is so swift and turbulent that most of the sand load of the stream is suspended and can be measured with depth-integrating samplers. Measurements of suspended sediment at the contracted section represent approximately the total sediment discharge of the stream.

PERSONNEL AND ACKNOWLEDGMENTS

The investigation was under the supervision of P. C. Benedict, regional engineer, Geological Survey. Field and laboratory work was under the supervision of R. B. Vice, succeeded by R. F. Kreiss, hydraulic engineers, Geological Survey. For the Bureau of Reclamation, W. M. Borland, head of the sedimentation section, Hydrology Branch of the Project Planning Division; O. H. Hansen, engineer, Region 7; and C. E. Burdick, area engineer, Ainsworth office, assigned engineers from Denver and Ainsworth to join in setting up the field investigation and in obtaining field data. K. B. Schroeder, assistant head of the sedimentation section, supervised Bureau of Reclamation personnel who computed some sediment discharges by Einstein's original method. J. M. Busalacchi and D. B. Raitt of the Ainsworth office, O. H. Hansen, K. B. Schroeder, and R. B. Vice planned the field investigation that was started during 1951. C. R. Miller and D. B. Raitt, hydraulic engineers, materially assisted in the collection of field data.

An earlier analysis by E. F. Serr, III, of the results of the investigation through November 1948 has been published as U. S. Geological Survey Circular 67, "Progress report, Investigations of fluvial sediments of the Niobrara River near Cody, Nebraska."

Unpublished records of water discharge and other streamflow data were furnished by D. D. Lewis, district engineer, Geological Survey. D. W. Hubbell and D. Q. Matejka, engineers, Geological Survey, assisted materially in several studies that supplement the computations of sediment discharge.

PURPOSE AND SCOPE OF THE INVESTIGATION

When the investigation of the fluvial sediments of the Niobrara River about 8 miles south of Cody was begun, the general objectives were to determine the suitability of the contracted section as a site for measuring nearly total sediment discharge of the stream, to determine the differences in the measured quantities of sediment discharge at the contracted section and at two other cross sections of the river, which are relatively unconfined, and to determine the relation of these differences in measured sediment discharge to water discharge, to sediment discharge, and to time from season to season or year to year. In 1951 the investigation was expanded to include 10 additional cross sections from which data were obtained specifically for use in formulas for the computation of total sediment discharge. Only the parts of the investigation that relate directly or indirectly to the computation of total sediment discharge of the stream are covered by this report.

Field and laboratory work included determinations of streamflow, stream cross sections, suspended-sediment discharges, and particle sizes of suspended sediment and of bed material. Vertical and lateral distributions of velocity, concentration, and particle sizes occasionally were defined for most of the sections. Water-surface slopes and air and water temperatures were measured. Depth-integrated samples were collected daily at one vertical at the contracted section.

Office work included computation of daily discharge of suspended sediment at the contracted section for the period April 1948 through September 1953. Stream cross sections were plotted; distributions of velocity, concentration, and particle sizes. were graphed. Measurements of streamflow and of suspendeusediment discharge were tabulated. The unmeasured sediment discharge as shown by the difference in discharges of suspended sediment at the contracted section and at less confined sections was computed and was studied in relation to total sediment discharge, water discharge, and water temperature.

Computations were made of total sediment discharge by formulas that were applied to measurements at cross sections in alluvial reaches. The computed total sediment discharges were compared with the measured sediment discharges at the contracted section. From these studies, conclusions were drawn with respect to the effectiveness of the turbulence at the contracted section in suspending the total sediment discharge of the river, to the amount and variability of the unmeasured sediment discharge, and to the applicability of the formulas for the computation of total sediment discharge for this reach of the Niobrara River. Finally, one of the standard procedures was modified to compute the total sediment discharge.

SEDIMENT AND STREAMFLOW RECORDS

Information on the suspended-sediment discharges, the particle sizes, and the lateral and vertical distributions of sediment and streamflow was obtained at five cross sections of the Niobrara River near Cody. Soundings and water-surface slopes were obtained periodically at eight other cross sections.

Before computations of total sediment discharge are attempted, the basic information and the sections at which it was obtained should be understood. The necessary background includes definitions that will help to avoid misunderstanding, descriptions of the individual sections for which data were obtained and for which computations of total sediment discharge are to be made, and tabulations of the measured sediment and streamflow records at these sections. The sections are discussed in downstream order following the definitions.

DEFINITIONS

As the definitions of terms that apply to fluvial sediment are not completely standardized, some of the terms in this report are defined as follows:

Suspended sediment or suspended load is sediment that is moved in suspension in water and is maintained in suspension by the upward components of turbulent currents or by colloidal suspension.

Bed load or sediment discharged as bed load is the sediment that is moved along in essentially continuous contact with the stream bed.

Total sediment discharge or total sediment load is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that is discharged during a given time.

Measured suspended-sediment discharge is the suspendedsediment discharge that can be computed from water discharge and the concentration of depth-integrated samples.

Unmeasured sediment discharge or unmeasured sediment load is the difference between total sediment discharge and measured suspended-sediment discharge.

Depth-integrated sample is a sample of sediment that is accumulated continuously in a sampler that moves vertically at a constant transit rate and that admits water and sediment mixture at a velocity about equal to the stream velocity at every point of the sampler's travel. Depth-integrating samplers now in use normally collect water and sediment mixture only from the surface to about 0.3 foot from the stream bed. The part of the stream traversed by depth-integrating samplers is called in this report the "sampling zone" or the "sampled zone." Depth-integrating samplers used in the investigation included the US D-43, US D-49, and US DH-48 samplers.

Point-integrated sample is a sample of sediment that is accumulated continuously in a sampler that is held at a relatively fixed point and that admits a water and sediment mixture at a velocity about equal to the instantaneous stream velocity at that point. The samplers, US P-46, US DH-48 with air-control mechanism, and US DH-48 with finger-control mechanism, were all used as point-integrating samplers during the investigation.

Normal section is any relatively unconfined section of a stream, even though one or both banks may be somewhat stabilized and parts of the bed maybe siltstone or other cohesive material rather than unconsolidated sediment. Ideally, a normal section should be in an alluvial reach of the stream.

The size classification is the classification that has been recommended by the American Geophysical Union Subcommittee on sediment terminology (Lane and others, 1947, p. 937). According to this classification, clay-size particles have diameters between 0.0002 and 0.004 millimeter, silt-size particles have diameters between 0.004 and 0.062 millimeter, and sand-size particles have diameters between 0.062 and 2.0 millimeters.

The median, or median diameter, as defined by Twenhofel and Tyler (1941, p. 110) "is the midpoint in the size distribution of a sediment of which one-half of the weight is composed of particles larger in diameter than the median and one-half of smaller diameter. The median diameter may be read directly from the cumulative curve by noting the diameter value at the point of intersection of the 50 -percent line and the curve."

The geometric mean size is the size that is computed as the square root of the product of the upper and lower limits of a given size range. For the range of smallest particle sizes, the lower limit for this report was arbitrarily assumed to be 0.002 millimeter.

Water discharge is the discharge of natural water of a stream. The nàtural water contains both dissolved solids and suspended sediment.

FORD SECTION

The farthest upstream section at which streamflow and suspended-sediment discharge measurements were made for this investigation is called the ford section. (See fig. 1 for the relative locations of the different cross sections and the waterstage recorder.) This is a wide, shallow section (fig. 2) about 750 feet upstream from the recorder. The section is in a meandering reach of the river (fig. 3). The banks are alluvium, but siltstone is usually exposed on part of the bottom. After a cableway was installed across the river just below the recorder on February 24, 1949, streamflow and sediment discharge measurements were no longer taken at the ford section.

Streamflow measurements at the ford section are listed in table 1 and sediment discharge measurements, in table 2. Watersurface slopes were not determined and bed-material samples were not collected for this section. The particle-size analyses of suspended sediment are given in table 3.

GAGING-STATION SECTION

The gaging station is about 750 feet downstream from the ford section and about 1,900 feet upstream from the contracted section in the chute. (See fig. 1.) The gaging-station section, at which both streamflow measurements and sediment samples are taken, is at the cableway about 30 feet downstream from

Figure 1.--Outline map of Niobrara River near Cody, Nebr.

Figure 2.--Channel cross section at the ford section for streamflow measurements and sediment sampling.

Figure 3.--A view downstream along the Niobrara River valley toward the ford section and the gaging station near Cody, Nebr.
the water-stage recorder. Although this section has been used throughout this investigation as a site for collecting data to compare with determinations at the contracted section, it is not a typical alluvial section of the stream. At times of high flow the stream bed at this section sometimes scours down to clayey siltstone. Also, the section is laterally confined by reasonably stable banks, which are overflowed at high stages only. At low flow the channel is about 70 feet wide. The cross section at the gaging-station section is shown in figure 4 for three different times. Streamflow measurements are listed in table 4 and suspended-sediment discharge measurements, in table 5. Watersurface slopes in table 4 were computed from the difference in altitude of the water surface at two staff gages, one 470 feet upstream from the water-stage recorder and one at the recorder. A profile of the water surface from the ford section to the waterstage recorder (fig. 5) shows that on April 22, 1953, the slope of the water surface was flatter near the gaging-station section than the average slope between the two gages.

Since April 15, 1953, a continuous record of water temperature has been obtained at the gage.

DISTRIBUTIONS IN THE CROBS AECTION

Lateral distributions of velocity, concentration, and depth are shown in figure 4 for three different times. The gaging-station section is reasonably uniform across the channel.

Many sets of point-integrated samples have been taken to show the vertical distribution of concentration and particle sizes at the gaging-station section. Some results of three of these sets of samples are given in figures 6 to 8. Velocities plotted on these figures are based on the volumes and filling times of the samples and may be somewhat inaccurate. However, most of these vertical velocity curves seem to have logical shapes. The particlesize analyses and the concentrations of the point-integrated samples are listed in table 6.

Velocities based on volumes and on filling times of sediment samples are computed on the assumption that the entrance velocity at the nozzle of the sampler is about equal to the velocity of the water when undisturbed by the sampler. From the crosssectional area of the nozzle at its entrance, from the volume of the sample, and from the filling time, the approximate average velocity of the stream at the point where the sample was taken can be computed. Similarly, the average velocity throughout the part of a vertical that was sampled at a constant rate of travel of the sampler can be computed.

Figure 4.--Lateral distribution of depth, velocity, and concentration of suspended sediment, gaging-station section, Niobrara River near Cody.

Figure 5.--Longitudinal profiles of the water surface of a reach of the Niobrara River near Cody, Nebr.

EXPLANATION

Concentration, in parts per million

> Velocity, in feet per second
Percent coarser than 0.25 mm

Figure 6.--Vertical distributions at gaging-station section, March 3, 1950.

14 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

EXPLANATION

Concentration, in parts per million Velocity, in feet per second

Percent coarser thon 0.25 mm

Figure 7.--Vertical distributions at gaging-station section, April 27, 1951.

In general, the concentrations of sediment are clearly shown to increase rapidly with depth, but the observed vertical distribution of sediment concentrations differs from one vertical to another, partly because of experimental errors. Many curves of vertical distribution of concentration with depth have been plotted, some against the depth and some against the function ($d-y$) $/ \mathrm{y}$, in which d is depth and y is distance above the stream bed. Curves, drawn as straight lines on the logarithmic scales of figures 9 and 10 , were fitted by eye to the plotted points of individual concentrations and were grouped by verticals. These figures indicate for each vertical the change in slope of the lines with changing particle size and also the measure of agreement between the straight lines and the concentrations. In figure 11 the lines are grouped by size ranges to show the variations in slope from one station to another in the cross section.

According to theories of distribution of suspended sediment at a vertical of a stream section as recapitulated by Einstein (1950, p. 17), the concentrations in a size range should plot in a straight line against ($\mathrm{d}-\mathrm{y}$)/y on logarithmic coordinates, and the slope of the line should define the exponent. This exponent z_{1} is a measure of the rate of increase of concentration with depth. It has often been assumed to equal z and is, as restated by Einstein (1950, p. 17), defined by the equation

$$
z=\frac{V_{s}}{0.4 u_{*}}
$$

in which $\mathrm{V}_{\mathbf{S}}$ is the settling velocity of the geometric mean size of particles in a particular size range
0.4 is the universal constant for turbulent exchange u_{*} is the shear velocity (Einstein uses $u_{*}{ }^{\prime}$, the shear velocity with respect to the sediment particles)

The shear velocity is equal to the square root of the product of the gravity acceleration, the energy gradient, and the hydraulic radius. (The definition of all symbols is given on p. 115. In general, the symbols have the same meanings that were given them by Einstein, but some have been used with slightly different meanings.)

As defined, z is the exponent in the theoretical equation for vertical distribution of sediment of a particular size range. The equation is

$$
\frac{c_{y}}{c_{a}}=\left(\frac{d-y}{y} \frac{a}{d-a}\right)^{z}
$$

Figure 9.--Relation of $(\mathrm{d}-\mathrm{y}) / \mathrm{y}$ plotted against concentration for different size ranges, gaging-station section, March 3, 1950.

[^0]Figure 11.--Relation of $(\mathrm{d}-\mathrm{y}) / \mathrm{y}$ plotted against concentration for different size ranges, gaging-station
in which d is the depth of flow
a and y are distances above the stream bed c_{a} and c_{y} are concentrations of particles of a given size range at distances a and y, respectively, above the bed

In figure 12 the exponent z_{1} from figures 9 to 11° is shown to vary curvilinearly with settling velocity. For comparison, a curve showing variation of z_{1} with the 0.7 power of the settling velocity has also been plotted on figure 12. Settling velocities used in this report were based on an equation given by Rubey (1933). The difference between z_{1} as determined from pointintegrated samples and z as defined by the equation given above is much too great to be overlooked. It is discussed in detail in the section entitled "Computation of z."

PARTICLE SIZES OF THE SEDIMENTS

Point-integrated samples of suspended sediment at the gagingstation section were individually analyzed for particle size. (See table 6.) These analyses are essential to studies of vertical distribution of the sediment but are not easily used to determine average particle-size distributions for the entire cross section of the stream.

Many depth-integrated samples of suspended sediment from the gaging-station section have been analyzed for particle-size distribution. (See table 7.) The median particle size for a large percentage of samples is about 0.10 to 0.15 millimeter. Most particles of suspended sediment are in the lower ranges of sand sizes. The suspended sediment is low in percentages of silt and clay except during and following high water discharges when appreciable amounts of the streamflow come from surface runoff that originated on soils of fine texture.

Samples of stream-bed material have been collected at the gaging-station section many times. Usually these samples were taken at three places in the cross section, and each sample was separately analyzed by sieving. The average analysis of the bed material for each sampling date is shown in table 8. An average of all the analyses has been computed and is shown graphically in figure 13. Nearly all the bed material is in the range of sand sizes. The median diameter of the sediment in the arithmetic average analysis is 0.27 millimeter.

Figure 12.--Relation between z_{1} as determined graphically from point-integrated samples and the settling velocity.

Figure 13.--Computed average analysis of 50 sets of bed-material samples at the

Samples were collected with one of three types of bed-material samplers. One type was a pint ice cream carton or a tin can, which was forced into the stream bed. Another type was a metal cylinder, 2 inches in diameter. This cylinder contained a piston that could be gradually raised in relation to the cylinder as the sampler was forced into the stream bed. The third was a sampler US BM-48, a streamlined 100 -pound clamshell sampler.

Bed-material sizes at a section or reach of channel may vary with water discharge, water temperature, or some other factors, but no relationship has been clearly defined for the Niobrara River near Cody. Water temperature was plotted against the particle size at which 25 percent of the bed material was finer (fig. 14). Analyses of samples of bed material from all normal sections were included. No relationship is apparent from figure 14. Also, water discharge was plotted against the size at which 25 percent is finer, the median particle size, and the size at which 75 percent is finer (fig. 15). Only samples from the gagingstation section were included in this graph. The average analysis of the samples for the highest water discharge shows much finer material than the average for all other discharges. Additional samples of bed material at high rates of flow might define a trend. Such a trend toward larger percentages of fine particles at high discharges may not be unreasonable at this station, for the sizes of suspended sediment tend to become smaller at high flows.

To further test the possibility of variation of bed-material size with water temperature and streamflow, an estimating equation was computed by multiple linear correlation. The equation based on 19 determinations at the gaging-station section was

$$
D_{25}=0.2318+0.000226 T-0.0000942 Q
$$

in which D_{25} is the size, in millimeters, at which 25 percent T is temperature of the water at time of sampling, in degrees Fahrenheit
Q is the water discharge at time of sampling, in cubic feet per second

This equation shows little average change in D_{25} for the ranges in T and Q that are covered by the available data. Also, the coefficient of multiple correlation 0.543 is not quite significant even to the 0.05 level. These computations substantiate the tentative interpretation of figures 14 and 15.

Because no definite relationship of particle size of bed material to other factors has been established for the gaging-station section, an arithmetic average of all bed-material samples has been used for comparisons and computations of sediment relations.

24 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

Figure 14.--Graph of first quartile size of bed material plotted against water temperature for all sections.

CONTRACTED SECTION

The contracted section is at the county bridge over the chute about 8 miles south of Cody. The chute was formed as the stream entrenched itself in the argillaceous siltstone. At its upper end, about 50 feet upstream from the bridge, the chute is only 2 or 3 feet wide at the water surface (fig. 16). It expands to a width of about 11 feet at the bridge (fig. 17), and the flow becomes slower as the width increases. This section was chosen as the measuring section because investigation indicated that the maximum concentration of suspended sediment along the chute was at the bridge. A cross section at the bridge is shown in figure 18. No streamflow measurements have been made at the contracted section, but the computed average velocity at the contracted section is about 3.82 feet per second at a water discharge of 324 cfs .

Measurements of sediment discharge made at the contracted section are listed in table 9. These measurements are based on depth-integrated samples at three verticals in the cross section. Usually the concentration at the middle vertical is appreciably lower than the average concentration at the outer verticals. Water temperatures were taken once a day until April 15, 1953, when a water-temperature recorder was installed at the waterstage recorder. (See table 10.)

DIBCHARGE OF SUSPENDED SEDIMENT

Daily records of suspended-sediment discharge have been computed from April 1948 through September 1953 but are not included in this report. These records arebased on concentrations of daily depth-integrated samples that were collected at one vertical about at the middle of the contracted section and on streamflow at the gaging station about 1,900 feet upstream. As this one daily sampling vertical is at the part of the section where the concentration is somewhat low (p. 29), coefficients have been applied to adjust concentrations of daily samples to make them representative of the average concentration at the three verticals where samples are collected periodically. The coefficients, averaging about 1.15 , were usually applied as though they varied with water discharge.

The average concentration of suspended sediment was about $1,800 \mathrm{ppm}$ for 4 complete water years. Suspended-sediment discharges by days, months, and water years are presented or will appear in U. S. Geological Survey Water-Supply Papers of the series, Quality of Surface Waters of the United States. Sediment

Figure 16.--A view downstream from the upper end of the natural flume, Niobrara River near Cody.

Figure 17.--A view upstream toward the sampling point in the natural flume, Niobrara River near Cody.

discharge is uniform owing primarily to the regulating effect of ground-water storage in the sandhills. The uniformity is shown graphically by the duration curve of daily sediment discharge (fig. 19).

Suspended-sediment discharge at the contracted section is largely a function of the rate of streamflow, although the relation varies considerably with water temperature, size of the available material, and source of the runoff. On the average, the sediment discharge increases at least as rapidly as the cube of the water discharge below $3,000 \mathrm{cfs}$. The rate of increase with water discharge is somewhat lower above 3,000 cfs. (See fig. 20, which is a graph of daily average sediment discharge against daily average water discharge.)

DISTRIBUTIONS IN THE CONTRACTED SECTION

Lateral distributions of velocity and concentration are shown in figure 21 for three different times. These lateral distributions, based on only three verticals, are poorly defined, but they do show the tendency for the concentration to be lower near the middle of the section than at the verticals nearer the sides of the section.

Many sets of point-integrated samples have been collected to define the vertical distributions at the contracted section. These samples were analyzed for both concentration and particle size (table 11). The distributions of velocity, concentration, and percentage of particles larger than 0.25 millimeter were plotted for 3 different times in figure 22. The plotted velocities were based on the volumes and filling times of the samples and may be somewhat inaccurate.

Sediment concentrations usually increased relatively slowly with depth in the contracted section as compared with the rate of increase with depth at shallow, alluvial sections. Also, the percentage of particles larger than 0.25 millimeter did not usually increase very rapidly with depth in the contracted section. However, sometimes, particularly when water discharge is low, both concentration and percentage of the larger particles may increase rapidly with depth at some verticals. When the rate of increase with depth is no greater than it was at stations 7, 11, and 15 on March 3, 1950, stations 6 and 10 on September 16, 1949, and station 10 on May 5, 1949, the turbulence must be adequate to suspend most of the total sediment discharge of the river, and the
DAILY SUSPENDED-SEDIMENT DISCHARGE, IN TONS

Figure 19.--Duration curve of daily suspended-sediment discharge in the contracted section of the Niobrara River near Cody, from April 9, 1948, to September 30, 1952.

[^1]

Figure 21.--Lateral distribution of velocity and concentration of suspended sediment, contracted section.

Figure 22.--Vertical distributions at contracted section.
particle sizes larger than 0.25 millimeter must be about as completely suspended as the finer particles. Rapid increase of concentration and of percentage of the coarser particles with depth probably indicates that appreciable quantities of the total sediment discharge may not be suspended but may be moving through the contracted section as bed load. Because the section is narrow and flow through it is always much more turbulent than at other sections of the channel, the bed-load discharge is probably relatively low at all times.

PARTICLE SIZES OF THE SEDIMENTS

At times, especially during the summer when the streamflow is low, bed material accumulates on the bottom of the contracted section and can be sampled. Only a few samples of stream-bed material have been taken, but these show particle sizes that are a little coarser than the bed material at normal sections of the stream. (See table 12.) The samples were collected with a sampler US BM-48. All were obtained when the water discharge was low. At higher flows, little if any bed material stays on the bottom of the contracted section.

Most analyses of suspended sediment at the contracted section show that more than 80 percent of the particles were in the range of sand sizes (table 13). For suspended-sediment discharges of less than 2,000 or 3,000 tons per day the median particle sizes of the samples of suspended sediment at the contracted section ranged from 0.13 to 0.27 millimeter and averaged about 0.19 millimeter (fig. 23). At discharges of suspended sediment above 10,000 tons per day the 4 determinations of median particle size averaged less than 0.03 millimeter. This decrease of median particle size with an increase in both sediment and water discharge is due to the inclusion of more surface runoff in the higher flows. Much of the surface runoff comes from areas that have soils of fine texture.

NORMAL SECTIONS C-1 TO C-10

In June 1951, 10 sections were selected below the chute for measurements of flow and sedimentation characteristics to be used in formulas for computing sediment discharges through alluvial sections. Sections having beds of unconsolidated sediment and little lateral confinement were chosen. The upstream one of

Figure 23.--Median particle size plotted against suspendedsediment discharge, contracted section.
these sections, $C-1$, is about 1, 900 feet downstream from the contracted section. Distances between the successive sections vary considerably but average more than 1,000 feet. The farthest downstream section, $\mathrm{C}-10$, is about 12,200 feet from the contracted section. Staff gages were installed on the left bank at each section and were referred to a datum 100 feet lower than the datum of the water-stage recorder, which is upstream from the contracted section. Locations of the sections are given on figure 1. Figure 24 shows the outline of the 10 cross sections as they were first defined in June 1951. The sections are wide and shallow. Sections $\mathrm{C}-2$ (fig. 25) and $\mathrm{C}-6$ (fig. 26) at which measurements of flow and sediment concentration were made are not in straight, uniform reaches of channel, and flow through them is not particularly smooth nor uniform. The channel at sections C-3 and $\mathrm{C}-4$ is shown in figure 27 , which gives a good idea of the type of channel throughout the reach from section $\mathrm{C}-1$ to $\mathrm{C}-10$. Tables 14 to 23 list the soundings at each section 4 times in 1951 and 4 times in 1952. Some of the sections changed considerably in less than 2 years. Altitudes of the water surface at the sections are given in table 24 for several times during 1951 and 1952. Total fall from section $\mathrm{C}-1$ to section $\mathrm{C}-10$ ranged from 12.0 to 13.0 feet. These amounts of fall are equivalent to 6.1 and 6.6 feet per mile.

Streamflow measurements were made only at sections C-2 and C-6 and are listed in table 25. Mean velocities at the times of measurement ranged from 1.81 to 4.48 feet per second. Areas, widths, and velocities in table 25 are those used to compute total sediment discharge and are based on velocities unadjusted for horizontal angle and on areas and widths that exclude parts of the section in which the direction of flow is upstream. Average depths were all less than 2 feet. (On September 6, 1951, the total width of section C-6 was 96 feet, but the direction of flow was upstream in 33 feet of the section.)

Table 24.--Water-surface altitudes at normal sections C-1 to C-10

Date	Altitude of water surface above assumed datum (feet)										
	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10	$\begin{aligned} & \text { Total } \\ & \text { fall } \end{aligned}$
1951											
June 14.	87.19	86.04	85.14	83.40	82.19	80.53	78.97	77.12	76.09	74.43	12.76
June 16.	87.20	86.14	85.16	83.39	82.24	80.53	78.96	77.07	76.04	74.33	12.87
July 18.	87.46	86.31	85.36	83.48	82.28	80.59	79.03	77.17	76.12	74.45	13.01
July 28.	90.6	89.1	88.3	86.8	85.5	84.0	82.2	79.9	79.2	78.2	12.4
Aug. 3..	87.13	86.10	85.15	83.51	82.38	80.50	78.74	76.92	76.03	74.62	12.51
Sept. 6...	87.56	86.87	85.50	83.89	82.64	80.70	79.31	77.44	76.59	75.44	12.12
1952											
Apr. $1 . .$.	86.86		84.72	83.27	82.06	80.53	78.94	77.15	76.11	74.85	12.01
May 8.....	86.87	85.72	84.71	83.24	82.10	80.48	78.91	77.16	76.14	74.51	12.36
June 19..	86.95	85.67	84.71	83.02	81.87	80.28	78.69	76.88	75.83	74.23	12.72
Sept. 26..	87.08	85.81	84.86	83.13	81.89	80.29	78.70	76.84	75.76	74.15	12.93

Figure 24.--Profiles of normal sections $\mathrm{C}-1$ to $\mathrm{C}-10$, June 14, 1951, water discharge about 319 cfs.

Figure 25.--A view upstream toward normal section C-2, Niobrara River near Cody.

Figure 26.--A view upstream toward normal section C-6, Niobrara River near Cody.

Figure 27.--Normal sections C-3 and C-4 and adjacent reach of the Niobrara River near Cody.

DISTRIBUTIONS IN THE CROSS SECTIONS

Lateral distributions of velocity and concentration were defined several times for sections $\mathrm{C}-2$ and $\mathrm{C}-6$. These distributions for two different times are shown in figures 28 and 29. Velocity, depth, and concentration sometimes vary considerably across the sections, especially at section C-6. Vertical distributions of velocity, concentration, and percentage of particles larger than 0.25 millimeter have been defined once for sections $\mathrm{C}-2$ and C-6. (See figs. 30 and 31.) These velocities were measured with a pygmy current meter.

PARTICLE SIZES OF THE SEDIMENTS

Samples of stream-bed material were collected at all sections, usually at three places in the cross section (table 26). Particle sizes of the bed material are about the same at all sections. Average particle-size analyses for section $C-2$, section $C-6$, and for all 10 sections collectively are plotted in figure 32.

Figure 28.--Lateral distribution of depth, velocity, and concentration of suspended sediment, normal section C-2.

Figure 29.--Lateral distribution of depth, velocity, and concentration of suspended sediment, normal section C-6.

Figure 30.--Vertical distributions at section C-2, May 20, 1953.

Figure 31.--Vertical distributions at section C-6, May 20, 1953.

Figure 32.--Computed average analyses of bed-material samples at normal sections C-2, C-6, and $\mathrm{C}-1$ to $\mathrm{C}-10$.

Size analyses of the suspended sediments from depth-integrated and point-integrated samples, which were collected only at sections C-2 and C-6, are similar to the size analyses of suspended sediment at the gaging-station section (tables 7, 27, and 28). Most of the suspended sediment is in the sand sizes, much of it from 0.125 to 0.25 millimeter.

UNMEASURED SEDIMENT DISCHARGE

During this investigation, information on sediment and streamflow was obtained principally for determination of unmeasured sediment discharge or total sediment discharge. One method of studying the unmeasured sediment discharge is to compare the discharge of suspended sediment at the contracted section with that at normal sections. Another method of study is based on computations of total sediment discharge, or at least that part of the sediment discharge that is in the range of bed-material particle sizes, from formulas that can be applied to alluvial sections of a stream. This second method is more generally applicable, because a suitable contracted section in which total sediment discharge can be measured is not usually available. Of course, the measurements of suspended-sediment quantities and particle sizes at the contracted section near Cody provide useful checks on the applicability of the formulas that were used. The two general methods, as they were applied to the Niobrara River near Cody, will be discussed separately and in detail.

DIFFERENCES IN SUSPENDED-SEDIMENT DISCHARGE AT CONTRACTED AND AT NORMAL SECTIONS

Determinations of concentration and of suspended-sediment discharge have been made on many days at approximately comparable times at the contracted section and at a normal section (tables 2, 5, 9, and 29). After determinations that were based on samples at only one vertical were eliminated, 71 comparisons of concentrations were still available and are shown in table 30. For sections C-2 and C-6 as well as the gaging-station section, water discharges in table 30 are based on gage heights and rating curves at the water-stage recorder. In order to avoid the effect of small differences in water discharge, ratios of concentration at the normal section (C_{ns}) to concentration at the contracted section (C_{cs}) were compared rather than ratios of sediment discharge. These ratios of concentration averaged $0.53,0.59,0.36$, and 0.42 for the gaging-station section, the ford section, section
Table 30.--Comparison of sediment discharge measurements at normal sections to sediment discharge measurements at the contracted section, Niobrara River near Cody

Date	Time	Gage height (feet)	Water discharge (cfs)	Concentration (ppm)	Sediment discharge (tons per day)	Time	Water discharge (cfs)	Concentration (ppm)	```Sediment discharge (tons per day)```	Concentration ratio 1/
Ford section						Contracted section				
1948										
July 20...	6:00 p.m.	1.21	436	1,400	1,650	5:00 p.m.	452	1,800	2,200	0.78
Sept. 8...	6:52 p.m.	. 91	234	410	259	11:00 a.m.	248	776	519	. 53
oct. 13...	3:05 p.m.	. 98	268	538	389	4:00 p.m.	263	1,180	838	. 46
Gaging-station section						Contracted section				
1948										
July 20...	8:40 p.m.	1.24	452	1,370	1,670	5:00 p.m.	452	1,800	2,200	0.76
Sept. 8...	6:15 p.m.	. 90	229	389	241	11:00 a.m.	248	776	519	. 50
oct. 13...	4:45 p.m.	. 96	258	483	336	4:07 p.m.	263	1,180	838	. 47
Nov. 3....	3:20 p.m.	1.06	308	564	469	2:20 p.m.	319	1,610	1,390	. 35
1949										
Feb. 25...	10:30 a.m.	1.29	452	775	945	9:00 a.m.	458	954	1,180	. 81
Mar. 8....	4:00 p.m.	1.76	732	1,970	3,890	2:15 p.m.	720	3,240	6,300	. 61
July 13...	3:55 p.m.	. 88	234	219	138	11:00 a.m.	263	- 970	689	. 23
1950										
Mar. 3...	4:15 p.m.	1.13	392	1,060	1,120	11:25 a.m.	366	1,890	1,870	. 56
Mar. 5....	9:25 a.m.	1.16	408	1,550	1,710	1:15 p.m.	408	2,140	2,360	. 72
Apr. 14...	11:25 a.m.	1.14	398	813	874	1:00 p.m.	387	1,770	1,850	. 46
May 11....	11:40 a.m.	1.36	566	1,040	1,590	1:20 p.m.	549	2,660	3,940	. 39
June 7....	10:45 a.m.	. 92	258	421	293	11:05 a.m.	253	890	608	. 47

Date	Time	Gage height (feet)	```Water discharge (cfs)```	Concentration (ppm)	Sediment discharge (tons per day)	Time	```Water discharge (cfs)```	Concentration (ppm)	Sediment discharge (tons per day)	Concentration ratio 1/
Gaging-station section--Continued						Contracted section--Continued				
1952--Con.										
May 8.....	$10: 45 \mathrm{a} . \mathrm{m}$.	1.19	435	862	1,010	5:15 p.m.	400	1,700	1,840	0.51
May 24....	1:20 p.m.	1.23	455	890	1,090	12:30 p.m.	460	2,750	3,420	. 32
June 5....	12:05 p.m.	1.04	306	514	425	3:05 p.m.	262	1,200	849	. 43
June 19...	11:35 a.m.	. 78	230	458	284	11:00 a.m.	234	754	476	. 61
July 4....	10:10 a.m.	. 90	278	462	347	11:50 a.m.	262	934	661	. 49
July 20...	11:10 a.m.	. 75	219	246	145	8:40 a.m.	223	503	303	.49
July 31...	1:45 p.m.	. 73	212	204	117	3:40 p.m.	212	392	224	. 52
Aug. 16...	10:05 a.m.	. 84	254	394	270	7:45 a.m.	262	820	580	. 48
Aug. 29...	11:00 a.m.	. 74	208	245	138	11:05 a.m.	208	429	241	. 57
Sept. 12..	9:30 a.m.	. 73	223	282	170	8:30 a.m.	223	454	273	. 62
Sept. 26..	11:10 a.m.	.81	234	346	219	12:00 m.	234	736	465	.47
oct. 11...	9:55 a.m.	.94	294	446	354	10:35 a.m.	290	1,220	955	. 37
oct. 23...	12:35 p.m.	. 92	286	482	372	10:20 a.m.	286	1,500	1,160	. 32
Dec. 11...	2:00 p.m.	1.00	328	866	767	11:30 a.m.	328	1,520	1,350	. 57
1953										
Jan. 9....	1:00 p.m.	. 90	294	1,020	810	1:55 p.m.	298	1,660	1,340	. 61
Feb. 3....	1:15 p.m.	1.13	400	1,080	1,170	9:40 a.m.	405	2,220	2,430	. 48
Mar. ll...	9:20 a.m.	1.36	538	1,290	1,870	8:05 a.m.	532	2,060	2,960	. 63
Apr. 22...	10:10 a.m.	1.08	365	605	596	8:45 a.m.	370	1,400	1,400	. 43
July 8....	5:30 p.m.	. 90	278	471	354	3:20 p.m.	278	792	594	. 60

Normal section C-2						Contracted section				
1951										
June 15...	12:10 p.m.	0.88	294	345	274	9:40 a.m.	342	1,340	1,240	0.26
July 18...	1:30 p.m.	. 92	278	433	325	9:40 a.m.	310	1,200	1,010	. 36
$\frac{1952}{\operatorname{May}}$	11:00 a.m.	1.18	430	752	870	5:15 p.m.	400	1,700	1,840	. 44
June 19...	12:10 p.m.	. 78	230	262	160	11:00 a.m.	234	754	476	. 35
Sept. 26..	5:50 p.m.	. 77	219	255	150	12:00 m.	234	736	465	. 35
$\text { May } \frac{1953}{20}$	11:50 a.m.	1.12	2/350	596	563	9:35 a.m.	355	1,560	1,500	. 38
Normal section C-6						Contracted section				
1951										
June 15...	1:20 p.m.	0.86	286	362	280	9:40 a.m.	342	1,340	1,240	0.27
July 18...	12:30 p.m.	. 96	294	317	252	9:40 a.m.	310	1,200	1,010	. 26
1952										
May 8....	2:50 p.m.	1.13	405	874	960	5:15 p.m.	400	1,700	1,840	. 51
June 19...	12:10 p.m.	. 77	226	294	179	11:00 a.m.	234	754	476	. 39
Sept. 26..	2:45 p.m.	. 79	226	504	308	12:00 m.	234	736	465	. 68
$\frac{1953}{20 \ldots}$	3:05 p.m.	1.03	2/ 310	685	573	9:35 a.m.	355	1,560	1,500	. 44

l Ratio of the concentration at a relatively unconfined section to the concentration at the contracted

[^2]C-2, and section C-6, respectively. The total range was 0.23 to 1.33 , and the overall average was 0.51 . These ratios are closely equivalent to the corresponding ratios of sediment discharge and are referred to as ratios of sediment discharge in other parts of the report. The ratios are subject to large experimental errors that either are inherent in measurements of suspended-sediment discharge, are due to scour or deposition between the sections at the times of measurement, or are caused by not measuring concentration at comparable times. Probably these ratios tend to be slightly too large, because at least a small fraction of the total sediment discharge of the stream was not measured by depthintegrated sampling at the contracted section.

The ratio of measured sediment discharge at a normal section to total sediment discharge of the river might be expected to vary with streamflow, with sediment discharge, or with water temperature. Figures 33 and 34 show poorly defined relationships, but the ratios from table 30 do seem to increase somewhat with either increasing streamflow or increasing sediment discharge. The ratio must increase appreciably at very high rates of streamflow for which depths and velocities are much greater and particle sizes average much smaller than at normal and low flows. The computed ratios decrease somewhat with increasing water temperature (fig. 35). This apparent decrease with water temperature may be partly explained by the seasonal pattern of streamflow and water temperature.

Though the size distribution of the sediment that is discharged as unmeasured load at a normal section may not be the same as the size distribution of the bed material, the 2 size distributions should be similar for a stream such as the Niobrara River in which the bed material is mostly sand finer than 1.0 millimeter. Table 31 shows the comparison of the average size distributions of the sediment. The size distribution of the unmeasured sediment discharge at the gaging-station section was computed from the equation $\mathrm{P}_{\mathrm{c}}=0.53 \mathrm{P}_{\mathrm{n}}+0.47 \mathrm{P}_{\mathrm{u}}$ in which $\mathrm{P}_{\mathrm{c}}, \mathrm{P}_{\mathrm{n}}$, and P_{u} are the percentages finer than any given size at the contracted section, the gaging-station section, and in the unmeasured load at the gaging-station section, respectively. Computations of P_{u} were made from average particle sizes, not weighted with water discharge, for each of the 6 water years. The bed-material size distribution in table 31 and the ratio, 0.53 , of measured sediment discharge at the gaging-station section to sediment discharge at the contracted section are averages for the entire period of record.

In spite of the indirect nature of the computations and the fact that all the suspen ded-sediment size distributions were used instead of only the sizes that were determined at comparable times,

Figure 33.--Ratio of measured sediment discharge at a normal section to sediment discharge at the contracted section plotted against water discharge.

[^3]

[^4]Table 31. --Average particle size of sediments of the Niobrara River near Cody

	Percent finer than indicated size		
	0.125 mm	0.25 mm	0.5 mm
1948 water year			
Suspended sediment at gaging-station section	47	87	97
Suspended sediment at contracted section..................	35	72	94
Unmeasured sediment discharge at gaging-station section.	21	55	91
Bedmaterial at gaging-station section....................	4	42	91
1749 water year			
Suspended sediment at gaging-station section.............	39	86	98
Suspended sediment at contracted section.................	21	64	92
Unmeasured sediment discharge at gaging-station section.	2	39	85
Bed material at gaging-station section....................	4	42	91
1950 water year			
Suspended sediment at gaging-station section.............	54	92	99
Suspended sediment at contracted section..................	32	71	96
Unmeasured sediment discharge at gaging-station section.	6	47	92
Bed material at gaging-station section....................	4	42	91
1951 water year			
Suspended sediment at gaging-station section.............	59	94	99.8
Suspended sediment at contracted section..................	43	79	97
Unmeasured sediment discharge at gaging-station section.	25	62	94
Bed material at gaging-station section....................	4	42	91
1952 water year			
Suspended sediment at gaging-station section..............	53	92	99.8
Suspended sediment at contracted section...................	28	69	97
Unmeasured sediment discharge at gaging-station section.	0	43	94
Bed material at gaging-station section...................	4	42	91
1953 water year			
Suspended sediment at gaging-station section.	53	94	100
Suspended sediment at contracted section..................	30	68	96
Unmeasured sediment discharge at gaging-station section.	4	39	91
Bed material at gaging-station section....................	4	42	91

the computed size distributions in the unmeasured sediment discharge for the water years $1949,1950,1952$, and 1953 check well with the size distribution of the bed material. In the 1948 water year only two size analyses were available for the contracted section, and this paucity of samples may have caused the divergence between the size distributions for 1948 (table 31). During 1951 several samples from periods or following periods of relatively high flow were analyzed for size. The averaging of particle sizes of these samples with those of other samples for 1951 may account for the somewhat discordant results for that year. During these periods of high flow the bed material may have been appreciably finer than average. (See fig. 23.) Of course, the sizes of the unmeasured sediment discharge should be a little finer than the bed material because the unmeasured sediment discharge includes some suspended sediment and also the finer particles from the bed should go into suspension more frequently than the coarser particles.

COMPUTATIONS OF SEDIMENT. DISCHARGE FROM FORMULAS

On most streams no suitable contracted section is available at which all or nearly all the sediment discharge can be measured. Hence, the total sediment discharge of a stream, or at least the unmeasured sediment discharge, can be determined only from computations that are based on those characteristics of flow and sediment discharge that can be measured at alluvial or moderately confined sections. Several basic formulas and procedures have been suggested for the computation of the part of the sediment discharge that consists of particle sizes that are in the stream bed in appreciable amounts. A form of each of four different formulas was used to compute some sediment discharges of the Niobrara River near Cody.

THE SCHOKLITSCH FORMULA

A formula for computing the discharge of bed material has been presented by Shulits (1935, p. 644-646, 687). It was developed by Schoklitsch from flume experiments in which the bed material was nearly uniform quartz particles. Presumably it should give the total discharge of particles of sizes large enough to be present in the bed in appreciable quantity.

The Schoklitsch formula is

$$
G=\frac{86.7}{D_{50} 1 / 2} \mathrm{~S}_{\mathrm{e}}^{1.5}\left(\mathrm{Q}-0.00532 \frac{\mathrm{wD}_{50}}{\mathrm{~S}_{\mathrm{e}}^{4 / 3}}\right)
$$

in which $G=$ discharge of bed material, in pounds per second
$D_{50}=$ median diameter of the particles, in inches
$\mathrm{S}_{\mathrm{e}}=$ slope of the energy gradient
$\mathrm{w}=$ width of the stream, in feet
$Q=$ water discharge, in cubic feet per second
Sediment discharges computed from this formula and multiplied by 43.2 to convert to tons per day are listed in table 32 for comparison with measured discharge at the contracted section of particles larger than 0.125 millimeter. The bed material at the normal sections contains only a small amount of sediment of sizes smaller than 0.125 millimeter. Computed tonnages of sediment from the Schoklitsch formula are plotted against the measured sediment discharges in figure 36. At low discharges of sediment, the measured and computed tonnages agree fairly well; but at higher sediment discharges, the computed tonnages are much lower than the measured tonnages. If the computed sediment discharges are squared and then divided by 280 , the agreement with measured discharges becomes good. Of course, this is an arbitrary adjustment that is probably not generally applicable.

The measured sediment discharges in table 32 are for sediment larger than 0.125 millimeter and are measured only in the sense that they are based, but not always directly, on samples at the contracted section and on streamflow at the gaging station. That is, the measurements at the contracted section were not correctly timed to be comparable with determinations of streamflow and water-surface slopes at the normal sections. Hence the measured sediment discharges include possible inaccuracies in adjustments for changes in concentration at the contracted section and for changes in and time of travel of water discharges. (See p. 97 for a more complete description of adjustments to obtain measured sediment discharges for comparison.) On days like September 6, 1951, and September 26, 1952, the sediment discharge at the contracted section changed so much during the day that it may have been a poor basis for comparison with computed sediment discharges for normal sections.

Table 32.--Comparison of computed bed-material discharge from three formulas with measured sediment discharge at the contracted section

Date	Discharge (tons per day)			
	Measured sediment larger than 0.125 mm Contracted section	Computed		
		From the Schoklitsch formula	$\frac{40,000 \mathrm{w}}{\mathrm{D} 50^{3 / 4}}\left(\mathrm{ds}_{\mathrm{e}}\right)^{2}$	From the Straub formula
		Gaging-station section		
Mar. $3 .$.	1,250	667	2,360	6,360
$\frac{1951}{10 \ldots} .$	1,020	634	1,490	3,880
$\text { Sept. } \frac{1952}{26 . .}$	358	296	1,030	2,590
		Section C-2		
June 15...	767	454	994	2,750
July 18...	702	429	1,340	3,250
Aug. 3....	1,030	453	1,280	4,790
Sept. 6...	4,950	1,260	2,250	6,010
1952				
Apr. 1...	5,040	1,140	1,980	5,160
May 8.....	1,440	649	1,510	4,300
June 19...	352	375	1,010	2,640
Sept. 26..	285	349	896	3,270
		Section C-6		
July 18...	750	379	1,110	2,750
Aug. 3....	1,080	534	1,220	3,660
Sept. 6...	3,840	1,000	1,360	6,800
1952				
May 8....	1,330	517	1,980	5,110
June 19...	345	293	1,220	2,960
Sept. 26.	331	274	782	3,070

THE DU BOYS FORMULA

Several modifications of the general Du Boys formula have been suggested for computing sediment discharge of particle sizes that are large enough to be in the bed in appreciable quantities.

Figure 36.--Comparison of computed sediment discharge from the Schoklitsch formula at a normal section to measured sediment discharge of particles larger than 0.125 mm at the contracted section.

A simplified form has been used in this report. It is

$$
q_{B M}=\frac{K_{1}}{D_{50}^{3 / 4}}\left(\mathrm{~d} \mathrm{~S}_{e}\right)^{2}
$$

and

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{BM}} & =43.2 w \mathrm{q}_{\mathrm{BM}} \\
& =\frac{\mathrm{K}_{2}}{\mathrm{D}_{50}{ }^{3 / 4}}\left(\mathrm{~d} \mathrm{~S}_{\mathrm{e}}\right)^{2} \mathrm{w}
\end{aligned}
$$

in which q_{BM} is discharge of bed material, in pounds per second per foot of width
K_{1} is a constant to be defined
D_{50} is median particle diameter of the bed material, in millimeters
d is average depth, in feet
S_{e} is hydraulic slope
$Q_{B M}$ is discharge of bed material, in tons per day
43.2 is the constant to convert pounds per second to tons per day
w is width of stream, in feet
$\mathrm{K}_{2}=43.2 \mathrm{~K}_{1}$
This simplified form of the equation implies that $1-\left(\tau_{0} / \tau\right)$ is a constant and is included in $\mathrm{K}_{1} \not \tau \tau$ is the transporting force, and τ_{0} is the particular transporting force that is required to start movement of the bed material. Actually $1-\left(\tau_{0} / \tau\right)$ varies less than 10 percent from its average for the range of computations that were made.

To determine K_{2}, sediment discharges were computed from this formula and an assumed K_{2}. Then, measured sediment discharges for particles larger than 0.125 millimeter were computed from total measured sediment discharges and size distributions for the contracted section. They were divided by the width of the river at the normal section to get sediment discharge per foot of width. The measured sediment discharges so obtained were totaled, and the sum was divided by the sum of the sediment discharges that were computed from the equation and the assumed K_{2}. The quotient multiplied by the assumed K_{2} indicated that K_{2} should average about 40,000 . The equation for total sediment discharge, in tons per day, of the size fractions larger than 0.125 millimeter thus became

$$
\mathrm{Q}_{\mathrm{BM}}=\frac{40,000}{\mathrm{D}_{50} 3 / 4}\left(\mathrm{~d} \mathrm{~S}_{\mathrm{e}}\right)^{2} \mathrm{w}
$$

60 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

Sediment discharges computed from this equation are listed in table 32 and are plotted on figure 37 against the comparable measured sediment discharges at the contracted section. The comparison shows that a lower numerical value for K_{2} would have given much better agreement except for three times of relatively high sediment and water discharge. K_{2} should have been much larger to obtain agreement between measured and computed sediment discharge for these three times. Sediment discharges computed from this formula were not satisfactorily accurate. They, like the sediment discharges that were computed from the Schoklitsch formula, increased too slowly with increasing water discharge.

THE STRAUB FORMULA

Straub (Cong. Doc., 1935, p. 1135) shows a formula for the computation of sediment discharge that seems to have been intended to compute only the discharge of the sediment that moves near the bed. This formula is a modification of the DuBoys formula and has been used in the form

$$
\mathrm{Q}_{\mathrm{BM}}=43.2 \theta \mathrm{~S}_{\mathrm{e}}^{2} \mathrm{wd}\left(\mathrm{~d}-\mathrm{d}_{\mathrm{o}}\right)
$$

in which Q_{BM} is the sediment discharge, in tons per day
43.2 is the constant for converting pounds per second to tons per day
θ is a sediment characteristic constant equivalent to Straub's Ψ, in pounds per cubic foot per second, from a curve drawn through data given by Straub (Cong. Doc., 1935, p. 1135)
S_{e} is the energy gradient, but the slope of the water surface was used as an approximation
w is the width of the channel cross section, in feet
d is the depth of water, in feet
d_{o} is the depth, in feet, at which the tractive force is just great enough to start moving sediment along the bed and is computed from a table given by Straub (Cong. Doc., 1935, p. 1135) for the tractive force required to start the bed sediment in motion

Each cross section was divided into 20 to 30 subareas, and the sediment discharge was in effect computed for each by summing up wd $\left(\mathrm{d}-\mathrm{d}_{\mathrm{o}}\right)$ for all the subareas. The work was checked roughly by substituting average depth for d and making one computation for the entire cross section.

Figure 37.--Comparison of computed sediment discharge from a form of the Du Boys formula at a normal section to measured sediment discharge at the contracted section. (Sediment discharge is for particles larger than 0.125 mm .)

Seventeen computations were made with the Straub formula. Even when compared with measured discharge at the contracted section of sediment coarser than 0.125 millimeter, the sediment discharges computed from the Straub formula are much too large, particularly when the measured sediment discharge is small. (See table 32 and fig. 38.) The trend of the computed discharges seems to indicate that the formula may apply much better to larger streams.

THE EINSTEIN PROCEDURE

H. A. Einstein (1950) has developed and outlined a complex procedure, which required several formulas and graphs, for. computing sediment discharge in the size ranges that are found in significant quantity in the stream bed. His procedure for computing discharge of suspended sediment is based on integration of the product of the theoretical velocity and suspended-sediment concentration along a representative vertical in the cross section. The bottom of the curve of suspended-sediment concentration is equated to the computed concentration of sediment in the bed-load layer, which is assumed to be 2 grain diameters thick. The rate of movement and the concentration in the bed-load layer are based on dimensionless expressions for the probability that a given particle will move from its position in the stream bed. The discharge of each of several size ranges of the sediment that forms the stream bed is computed separately.

His procedure was developed for use when the only data available would be an average cross section of a reach of channel, a slope through the reach, and an average particle-size distribution of the bed material. These base data are not easily obtained for a given time and reach. The water-surface slope requires essentially simultaneous gage readings on two or more gages that are referred to the same datum. At the time of the gage readings a representative cross section throughout the reach should be defined. The representative cross section should be based on several measured cross sections that are averaged. Einstein suggests averaging the areas of the cross sections and also averaging their wetted perimeters to obtain the representative cross section. Bed-material samples are required in sufficient number to determine a good average size analysis of the bed material throughout the reach at the time for which the computation is to be made.

The Einstein procedure does not compute the suspendedsediment discharge of particles too small to be in the stream bed in appreciable quantities. Therefore, the discharge of the finer particles must be measured if total sediment discharge of

Figure 38.--Comparison of computed sediment discharge from the Straub formula at a normal section to measured sediment discharge of particles larger than 0.125 mm at the contracted section.
a stream is to be computed. In some manner the measured discharge of sediment of the finer sizes must be combined with the computed discharges of the coarser sediments. A completely satisfactory method of combining the two is not known to the writers.

Sediment-discharge computations, nearly all by the Bureau of Reclamation, have been made for 8 days during 1951 and 1952 by applying the Einstein procedure to data from sections C-1 to C-10. Although the procedure was developed and was carefully restricted by Einstein to an average section in a reach of a stream, it has been applied to section C-2 for the same 8 days and to the gaging-station section for 2 days. These Einstein-type computations for individual cross sections were made mostly by the Bureau of Reclamation for comparison of relative accuracy with computations that were made for a single section by a modified method. Of course, the use of a single section requires so much less work than the use of a reach that it is much more economical provided suitable accuracy can be obtained at the single section. Tonnages computed by the Einstein procedure for several size ranges are listed in table 33 both for the reach and for section $\mathbf{C - 2}$. For comparison, sediment discharges at the contracted section are also listed for the same days. For some of the days, the breakdown for the contracted section into tonnages by size ranges was based on size analyses of samples for other days. (See table 33.) Computed sediment discharges by size ranges compare very poorly with the sediment discharges at the contracted section. The computed size distributions (table 33) indicate that the Einstein procedure gives median particle sizes that become larger as the total sediment discharge decreases. In other words, in proportion to their availability in the stream bed, the smaller sand particles move less readily compared to the larger particles as the water discharge decreases. Such a relationship seems illogical.

Sediment discharges of particles larger than 0.125 millimeter are given in table 33 for the Einstein procedure and for the contracted section. The computed discharges of sediment larger than 0.125 millimeter for the reach from sections $\mathrm{C}-1$ to $\mathrm{C}-10$ ranged from 63 to 272 percent and averaged 132 percent of the discharge of sediment larger than 0.125 millimeter at the contraction. The larger percentages tend to accompany the larger sediment discharges at the contracted section. For the same range of particle sizes, the sediment discharges computed for section C-2 ranged from 14 to 1,091 percent and averaged 498 percent.

The discharge of sediment of all sizes was obtained by adding the discharge that was computed by the Einstein procedure for particles larger than 0.125 millimeter to the discharge at the
Table 33.--Comparison of computed sediment discharge from Einstein procedure 1 / applied to sections $\mathrm{C}-1$ to $\mathrm{C}-10$ and to section $\mathrm{G}-2$ with measured /For all particle sizes, the tons per day is the sumt discharge at the contracted section -For all particle sizes, the tons per day is the sum of computed tonnages of sediment larger than 0.125 mm and measured tonnages at normal

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Date} \& \multirow[t]{3}{*}{Section} \& \multicolumn{12}{|l|}{Sediment discharge (tons per day)} \\
\hline \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Smaller } \\
\& \text { than } \\
\& 0.062 \mathrm{~mm}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{gathered}
0.062 \\
\text { to } \\
0.125 \mathrm{~mm} \\
\hline
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{gathered}
0.125 \\
\text { to } \\
0.25 \mathrm{~mm}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{gathered}
0.25 \\
\text { to } \\
0.5 \mathrm{~mm}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{gathered}
0.5 \\
\text { to } \\
1.0 \mathrm{~mm}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{gathered}
1.0 \\
\text { to } \\
2.0 \mathrm{~mm}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{gathered}
2.0 \\
\text { to } \\
4.0 \mathrm{~mm}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{gathered}
4.0 \\
\text { to } \\
8.0 \mathrm{~mm}
\end{gathered}
\]} \& \multicolumn{2}{|l|}{Larger than 0.125 mm} \& \multicolumn{2}{|l|}{All particle sizes} \\
\hline \& \& \& \& \& \& \& \& \& \& \[
\begin{gathered}
\text { Tons per } \\
\text { day }
\end{gathered}
\] \& Percent of measured \& Tons per
day \& Percent of measured \\
\hline \[
\frac{1951}{\text { June } 14 \ldots}
\] \& Sections C-1 to C-10. Contracted section 2/. Section C-2........... \& . 160 \& 3
272 \& \[
\begin{array}{r}
97 \\
1,168 \\
2
\end{array}
\] \& \[
\begin{gathered}
518 \\
\ldots \ldots .
\end{gathered}
\] \& \[
\begin{array}{r}
68 \\
\ldots \ldots
\end{array}
\] \& \[
\begin{gathered}
56 \\
\ldots \ldots \\
3
\end{gathered}
\] \& 1 \& \& \[
\begin{array}{r}
740 \\
1,168 \\
163
\end{array}
\] \& \({ }^{63} \ldots \ldots\) \& \[
\begin{array}{r}
1,017 \\
1,600 \\
437
\end{array}
\] \& \[
\begin{gathered}
64 \\
\ldots \ldots
\end{gathered}
\] \\
\hline July \(18 .\). \& Sections C-l to C-10. Contracted section... Section c-2........... \& \[
74
\] \& 2
130
462 \& \[
\begin{array}{r}
64 \\
419 \\
2,170
\end{array}
\] \& 388
270
1,590 \& \[
\begin{array}{r}
42 \\
37 \\
126
\end{array}
\] \& \begin{tabular}{c}
4 \\
\(\cdots\) \\
\hline 8
\end{tabular} \& "7... \& - \& 498
726
3,908 \& \(\cdots{ }^{69} \ldots\) \& \[
\begin{array}{r}
578 \\
930 \\
4,028
\end{array}
\] \& \[
\begin{gathered}
63 \\
\ldots \ldots \ldots \\
433
\end{gathered}
\] \\
\hline Aug. 3 \& Sections G-1 to C-10. Contracted section 3/. Section C-2........... \& \(\cdots \cdots . .\).

$\cdots \cdots$ \& 4
156

700 \& $$
\begin{array}{r}
130 \\
384 \\
1,730
\end{array}
$$ \& 449

360

1,173 \& $$
\begin{aligned}
& 58 \\
& 24 \\
& 90
\end{aligned}
$$ \& 9

12
15 \& $\ldots \ldots$
12
5 \& \& 646
792
3,013 \& 82
$\cdots \cdots \cdots$ \& 1,008
1,200
3,417 \& 84
\cdots
285

\hline Sept. 6.. \& Sections C-1 to C-10. Contracted section... Section $\mathbf{C - 2 ~}$ \& 1,153
4,100 \& 2,355
1,000
7,950 \& 9,570
2,200
35,200 \& 3,302
2,300
4,600 \& 364
300
360 \& 65
100
29 \& 22
$\cdots 33$ \& 5 \& 13,328
4,900
40,222 \& \& 17,458
10,000

44,942 \& $$
\begin{gathered}
175 \\
\cdots \cdots \cdots
\end{gathered}
$$

\hline $$
\frac{1952}{\text { Apr. }} 1 .
$$ \& Sections Cul to C-10. Contracted section L/ Section C-2........... \& …793* \& 1,690

1,370
5,550 \& 6,100
2,806
24,900 \& 2,235
1,944
4,620 \& 185
144
314 \& 33
$\cdots 30$ \& 21 \& \& 8,574
4,894
29,864 \& 175
$\cdots \ldots \ldots$ \& 10,254
7,200

31,649 \& $$
\begin{gathered}
142 \\
\ldots . . . \\
440
\end{gathered}
$$

\hline May 8. \& Sections G-l to C-10. Contracted section 5/. Section C-2........... \& $$
\begin{aligned}
& 193 \\
& 266
\end{aligned}
$$ \& 2,610

285

414 \& $$
\begin{array}{r}
1,630 \\
779 \\
3,980
\end{array}
$$ \& \[

$$
\begin{array}{r}
198 \\
532 \\
1,950
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
32 \\
38 \\
107
\end{array}
$$
\] \& 14

$\cdots \ldots$ \& $\cdots \cdots \ldots$
$\cdots 20$ \&
$\cdots \cdots .$. \& 1,874
1,349
6,113 \& 139
$\cdots .133^{\prime}$ \& 2,434
1,900

6,696 \& $$
\begin{gathered}
128 \\
\ldots \ldots \\
352
\end{gathered}
$$

\hline June 19.. \& Sections $\mathrm{C}-1$ to $\mathrm{C}-10$. Contracted section... Section C-2........... \& \& \[
$$
\begin{array}{r}
1 \\
59 \\
1,004
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
31 \\
189 \\
2,260
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
346 \\
113 \\
1,054
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 59 \\
& 13 \\
& 94
\end{aligned}
$$

\] \& \cdots \& \cdots \& \& \[

$$
\begin{array}{r}
442 \\
315 \\
3,437
\end{array}
$$

\] \& \[

$$
\begin{gathered}
140 \\
\ldots \ldots \ldots \\
1,091
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
523 \\
420 \\
3,520
\end{array}
$$

\] \& \[

$$
\begin{gathered}
125 \\
\cdots .9 \\
838
\end{gathered}
$$
\]

\hline Sept. 26.. \& Sections Cul to C-10. Contracted section... Section C-2.......... \& \& $\ldots \ldots .$.

$\ldots \ldots$. \& \[
$$
\begin{array}{r}
31 \\
216 \\
6 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
327 \\
122 \\
207 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
49 \\
9 \\
29 \\
\hline
\end{array}
$$
\] \& 6

\cdots

9 \& 1 \& \& $$
\begin{array}{r}
413 \\
347 \\
252 \\
\hline
\end{array}
$$ \& \[

$$
\begin{aligned}
& 119 \\
& \cdots \\
& 73
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
486 \\
450 \\
315 \\
\hline
\end{array}
$$

\] \& \[

108
\]

$$
70
$$

\hline Average. \& $$
\begin{aligned}
& \text { Sections } \mathrm{c}-1 \text { to } \mathrm{c}-10 . \\
& \text { Section } \mathrm{C}-2 . \ldots . . .
\end{aligned}
$$ \& …........ \& …..... \& \& \& ….... \& …... \& \& \& \& \[

$$
\begin{aligned}
& 132 \\
& 498 \\
& \hline
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \hline 111 \\
& 362 \\
& \hline
\end{aligned}
$$
\]

\hline
\end{tabular}

Sept. Sediment discharge by size ranges for sections $C-1$ to $C-10$ and for section $C-2$ was computed by the Bureau of Reclamation except for
normal section or sections of sediment smaller than 0.125 millimeter. The computed total discharge of sediment of all sizes for the reach from sections $\mathrm{C}-1$ to ${ }^{\circ} \mathrm{C}-10$ ranged from 63 to 175 percent and averaged 111 percent of the discharge at the contracted section. The larger percentages were usually for days when the sediment discharge was large (fig. 39). The computed discharges of sediment of all sizes for section C-2 ranged from 27 to 838 percent and averaged 362 percent of the sediment discharge at the contracted section.

Computed tonnages by the Einstein procedure as applied to the gaging-station section were 25,800 and 24,200 tons per day exclusive of fine particles as compared with measured daily sediment discharges at the contracted section of 2,190 and 420 tons per day on March 3, 1950, and on June 19, 1952, respectively. These comparisons are so unsatisfactory that the computed tonnages were not included in table 33. One reason for the high computed tonnages is that the water-surface slope at the gagingstation section is probably lower than the slope computed from staff gages at each end of the reach. (See fig. 5.)

On the basis of the computations by the Einstein procedure, the procedure is totally unsuited for application to either the gaging-station section or to section C-2. (The procedure was not designed to apply to single sections.) The total tonnages that were computed by applying the procedure to the reach from sections $\mathrm{C}-1$ to $\mathrm{C}-10$ and by adding measured discharge of sediment smaller than 0.125 millimeter were on the average reasonably good percentages of the tonnages at the contracted section. However, the relative tonnages in the different size ranges compared poorly with those for the contracted section.

MODIFIED PROCEDURE BASED ON EINSTEIN'S FORMULAS

The principal objective of the study of sediment discharge at sections $\mathrm{C}-1$ to $\mathrm{C}-10$ of the Niobrara River near Cody was to develop a method or to modify an existing method for computing total sediment discharge. A satisfactory procedure should, as far as possible:

1. Permit the computation, with reasonable accuracy, of the total sediment discharge, not just one part of the discharge and especially not an indefinite part.
2. Give the approximate size distribution of the computed discharge of sediment.

Figure 39.--Comparison of computed total sediment discharge from the Einstein procedure at sections $\mathrm{C}-1$ to $\mathrm{C}-10$ to measured sediment discharge at the contracted section.
3. Be computed from data that were obtained at only one cross section or within a short reach.
4. Be applicable to sections that are not in a uniform reach of channel and, insofar as possible, to sections in which the lateral distribution of flow is not uniform.
5. Use streamflow measurements rather than the water discharge that is computed from formulas.
6. Use depth-integrated samples of suspended sediment rather than point-integrated samples.
7. Be reasonably simple to use.

A promising procedure was developed to meet, in part, the above objectives. It is based on Einstein's formulas and consists of computing the sediment discharge for several ranges of particle sizes by applying different methods of computation for the ranges of small particle sizes than for the ranges of large particle sizes. In each range of the small particle sizes, the sediment discharge is computed by multiplying the suspended-sediment discharge in the sampled zone by the ratio of theoretical total suspended-sediment discharge in the size range to the theoretical suspended-sediment discharge of the same particle sizes in the sampled zone. The ratio is computed by dividing the integrated products of theoretical velocity and theoretical concentration from the stream surface to the top of the bed layer by similar integrated products from the stream surface to the lower limit of the sampled zone. In the size ranges of the larger particles, the total sediment discharge is computed about as explained by Einstein except that different methods of computation are used for the exponential measure z of the increase in sediment discharge with depth, the shear velocity with respect to the sediment particles, and the intensity of bed-load transport. These three major departures from the Einstein procedure will be explained in detail in the following sections.

COMPUTATION O'F Z

The exponent z is the exponential measure of the vertical distribution of suspended sediment in a size range. For a given cross section of a stream at a given time, z was intended to be the slope of the logarithmic plot of concentration c_{y} in a size range versus (d-y)/y (Einstein, 1950, p. 17, equation 29) in which d is the depth of water and y is the distance above the
stream bed. Einstein (1950, p. 17, equation 27) computes z from the equation

$$
\mathrm{z}=\frac{\mathrm{V}_{\mathrm{S}}}{0.4 \mathrm{u}_{*}}
$$

in which V_{S} is the fall velocity of the geometric mean particle size of a size range
0.4 is the universal constant for turbulent exchange
u_{*} ' is the shear velocity with respect to the sediment particles

This equation as well as most of the others that are used in the computations or explanations of the modified Einstein procedure is dimensionless so that any units of measurement can be used. Principal exceptions are those equations that contain sediment discharge for the entire width of a stream, and these discharges are in tons per day rather than in the foot-pound-second units that have otherwise been used. The z 's as computed from the above equation sometimes are far from a correct measure of the vertical distribution of the sediment in a stream. Also, the equation makes computed z 's vary directly with the fall velocity of the sediment particles, whereas the measured vertical distributions of sediment in different size ranges indicate a variation with about the 0.7 power of the fall velocity.

RELATIONSHIPS IṆVOLVing z_{1}, z_{2}. AND K

Anderson (1942, p. 682) has shown that z_{1}, the exponent that is determined by measured vertical distribution of sediment particles of a given size range, did not increase nearly so rapidly with increasing particle size in the Enoree River in South Carolina as the theoretically computed z's increased. His data indicate a rate of increase about proportional to the 0.7 power of the fall velocity. Einstein and Ning Chien (1952) have recognized the need for a revised theory for the computation of z. They have suggested two approaches to a second approximation for z, but the computations are somewhat complex and for the Missouri River at Omaha do not show a consistently good agreement with z_{1}.

To further test the relation between computed $z ' s$ and measured z_{1} 's, 22 sets of point-integrated samples from 6 different streams were used to determine z_{1} for each of 3 ranges of particle sizes. Each set consisted of point-integrated samples at 2 to 4 depths in each of 3 to 5 verticals. Graphs like figures 9 and 10 were prepared, and z_{1} 's for all verticals of each section were averaged for each of the three size ranges. The average z_{1} 's
are plotted against $z_{m}=V_{S} /\left(0.4 u_{m}\right)$ on figure 40. The subscript m denotes quantities that are computed according to the modified procedure. Specifically, the symbol u_{m} is used in place of Einstein's u_{*} ' because u_{m} is equal to $\sqrt{g(S R)_{m}}$ in which g is the gravity constant and (SR) m is computed from the mean velocity as shown by a discharge measurement and from the velocity equation. (See equation (E), p. 83.) Also, z_{m} is a z that is computed from the equation $z_{m}=V_{S} /\left(0.4 u_{m}\right)$. For this report fall velocities are based on equations given by Rubey (1933).

Figure 40 shows that for any day at any given cross section (that is, when u_{m} is constant) z_{1} usually varies as about the 0.7 power of the fall velocity of the geometric mean of its size range in spite of experimental errors. When z_{1} for one size range is either higher or lower than average, the z_{1} 's for the other size ranges generally have a somewhat similar relation to their averages. However, z_{1} for a given range of particle sizes varies widely from one cross section to another and from time to time at the same section. For the size range from 0.125 to 0.250 millimeter, the z_{1} 's were expressed in ratios to the average z_{1} 's for the given fall velocities by dividing each z_{1} by $3.66\left(V_{S}\right)^{0.7}$. These ratios show no definite relationship to computed shear velocity u_{m} (fig. 41).

As will be explained later, for each one of some size ranges a type of z can be computed from the ratio of sediment discharge in the sampled zone of a normal section to sediment discharge at the contracted section. This type of z, called z_{3}, is the exponential measure of the vertical distribution of sediment that, for a given size range, will make the total sediment discharge as computed for a normal section equal the suspended-sediment discharge as measured at a contracted (total-load) section. Fourteen sets of z_{3} 's were computed for each of three size ranges. The z_{3} 's were plotted against $z_{m}=V_{S} /\left(0.4 u_{m}\right)$ on figure 42. For a particular time and cross section, $z_{3}{ }^{\prime} s$ for different size ranges, like the z_{1} 's of figure 40, varied as about the 0.7 power of the fall velocity of the geometric mean particle sizes. Between different cross sections or different times at the same cross section, z_{3} 's showed wide variations. Ratios of z_{3} 's to average z_{3} 's for the given fall velocities did not correlate with the shear velocity (fig. 43).

Einstein and Ning Chien (1952, fig. 4) found not only that \mathbf{k}, the universal constant for turbulent exchange, decreased on the average with an increase in concentration as earlier reported by Vanoni (1941, p. 613) but also that k for the Missouri River at Omaha, Nebr., varied widely from its average. Changes in vertical distribution of velocity as measured by k are likely to be associated with changes in the vertical distribution of sediment

Figure 40.--Graph of z_{1} plotted against z_{m}.

Figure 41.--Graph of z_{1} adjusted for fall velocity plotted against shear velocity.

Figure 42.--Graph of z_{3} plotted against z_{m}.

Figure 43.--Graph of z_{3} adjusted for fall velocity plotted against shear velocity.
as measured by z_{1}. Unfortunately, natural inaccuracies in determining k are increased for the gaging-station section near Cody because vertical velocity curves were not defined by current-meter measurements. At sections $\mathrm{C}-2$ and $\mathrm{C}-6$ vertical velocity curves were defined by current-meter measurements when point-integrated samples were collected on May 20, 1953, only. At section C-2 on May 20, 1953, the z_{1} 's were very low; at section C-6 on the same day they were slightly below average; and on April 27, 1951, at the gaging-station section they were much higher than average. The k's for these three times and cross sections were computed to see if they would correlate with the z_{1} 's. Filling times of the point-integrated samples were used to compute velocities at points in the gaging-station section.

To determine k, such point velocities for each vertical were plotted along a rectangular coordinate scale against distance above the stream bed along a logarithmic scale. The slope M of the line through the plotted points on the semilogarithmic graph equals the quantity ($2.303 \mathrm{u}_{*}$)/k. This fact follows from the velocity equation that is given by Einstein (1950, p. 8, equation 3) when 5.75 is replaced by $2.303 / \mathrm{k}$ (Keulegan, 1938, p. 711-713). The velocity equation then becomes

$$
\bar{u}_{\mathrm{y}}=\frac{2.303}{\mathrm{k}} \mathrm{u}_{*} \log _{10} \frac{30.2 \mathrm{yx}}{\mathrm{k}_{\mathrm{s}}}
$$

in which \bar{u}_{y} is the time-averaged velocity at a distance y above the stream bed
y. is the distance above the stream bed
\mathbf{x} is a dimensionless parameter determined from figure 44
$\mathbf{k}_{\mathbf{S}}$ is the roughness diameter, that particle size for which 65 percent of the bed material by weight is finer

The slopes of the lines for all verticals of a cross section (one unrepresentative vertical was not included in the average for section $C-6$) were averaged to obtain a slope M for the cross section. Then u_{*} was computed from average depth and average water-surface slope, and k was determined from $k=$ ($2.303 \mathrm{u}_{*}$)/ $/ \hat{M}$. As the following table shows, computed k 's varied widely and inversely with z_{1} 's. On the basis of only the three computations of k, the variation of k seems to explain much of the scatter of the points on figure 40. Large variations in k may mask the theoretical relationship between z_{1} 's and shear velocity.

Figure 44.--Correction x in terms of k_{S} / δ

Comparison of z_{1} 's and computed k's

Date	Section	z_{1}			k
		$\begin{aligned} & \hline 0.062 \mathrm{to} \\ & .125 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline 0.125 \mathrm{to} \\ & .250 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 0.250 \mathrm{to} \\ & .500 \mathrm{~mm} \end{aligned}$	
$\text { Apr. } \frac{1951}{27}$	Gaging station	0.31	0.82	1.40	0.42
$\text { May } \frac{1953}{20 .}$	$\begin{aligned} & C-2 \ldots \\ & C-6 \ldots . . . \end{aligned}$	$\begin{aligned} & .22 \\ & .09 \end{aligned}$	$\begin{aligned} & .46 \\ & .23 \end{aligned}$	$\begin{array}{r} .62 \\ .36 \end{array}$	$\begin{gathered} .86 \\ 2.8 \end{gathered}$

Computed k 's in the above table may not apply near the stream bed where they were not defined. Hence, they may be suitable for correlation with the z_{1} ' s, which are determined for the same ranges of depth, without being correct for computation of total sediment discharge near the stream bed.

TRIAL-AND-ERROR COMPUTATION OF Z

For some ranges of particle size, z_{2} (the subscript denotes a z computed directly by trial and error or based on a trial-anderror z) can be computed from an equation that can be derived from relationships that have been stated by Einstein. This method for computing z_{2} is described below. It requires only depthintegrated samples, not point-integrated samples.
P, I_{1}, I_{2}, J_{1}, and J_{2} are symbols introduced by Einstein (1950) as abbreviations of certain functions and are defined as follows:

$$
\begin{aligned}
P & =2.303 \log _{10} \frac{30.2 d x}{k_{S}} \\
I_{1} & =0.216 \frac{A^{z}-1}{(1-A)^{z}} \int_{A}^{1}\left(\frac{1-y}{y}\right)^{z} d y \\
& =0.216 \frac{A^{z}-1}{(1-A)^{z}} J_{1} \\
I_{2} & =0.216 \frac{A^{z}-1}{(1-A)^{z}} \int_{A}^{1}\left(\frac{1-y}{y}\right)^{z} \log _{e}(y) d y \\
& =0.216 \frac{A^{z}-1}{(1-A)^{z}} J_{2}
\end{aligned}
$$

in which d is depth of water
A is the distance from the stream bed to the lower limit of integration divided by the depth d

For a given time at a given cross section of a stream, equation (34) (Einstein, 1950, p. 24) becomes simply

$$
q_{S}=K\left(P J_{1}+J_{2}\right)
$$

Then

$$
\begin{align*}
\frac{q_{s}^{\prime}}{q_{s}^{\prime \prime}} & =\frac{Q_{S}^{\prime}}{Q_{s}^{\prime \prime}} \\
& =\frac{P J_{1}^{\prime}+J_{2}^{\prime}}{P J_{1}^{\prime \prime}+J_{2}^{\prime \prime}} \tag{A}
\end{align*}
$$

in which q_{s} is suspended-sediment discharge, in pounds per second per foot of width, for a given range of particle sizes
$\mathrm{Q}_{\mathbf{S}}$ is suspended-sediment discharge through the cross section, in tons per day, for a given range of particle sizes
K is a constant at a particular time and cross section

A single prime mark designates a symbol that is associated with the sampling depth, and a double prime mark designates a symbol that is associated with the total depth through which suspendedsediment is discharged. Except for the use of prime marks, the nomenclature generally follows that of Einstein (1950).

Equation (61) (Einstein, 1950, p. 40) can be put in the form

$$
Q_{S}^{\prime \prime}=43.2 w \mathrm{i}_{\mathrm{B}} \mathrm{q}_{\mathrm{B}}\left(\mathrm{PI}_{1}{ }^{\prime \prime}+\mathrm{I}_{2}^{\prime \prime}\right)
$$

If $43.2 w^{1} B_{B} q_{B}$ is replaced by $i_{B} Q_{B}$,

$$
Q_{S}^{\prime \prime}=i_{B} Q_{B}\left(P I_{1}{ }^{\prime \prime}+I_{2}^{\prime \prime}\right)
$$

equation (B)
In these equations 43.2 is the coefficient for changing sediment discharge in pounds per second to tons per day
w is the width of the channel, in feet
${ }^{i} B q_{B}$ is sediment discharge, in pounds per second per foot of width, through the bed layer of particles of a given size range
${ }^{i}{ }_{B} Q_{B}$ is sediment discharge, in tons per day, through the bed layer of particles of a given size range

Equations (A) and (B) combine into

$$
\begin{aligned}
\frac{Q_{S}^{\prime}}{i_{B} Q_{B}} & =\left(P I_{1}^{\prime \prime}+I_{2}^{\prime \prime}\right) \frac{P J_{1}^{\prime}+J_{2}^{\prime}}{P J_{1}^{\prime \prime}+J_{2}^{\prime \prime}} \\
& =0.216 \frac{A^{z-1}}{(1-A)^{z}}\left(P J_{1}^{\prime}+J_{2}^{\prime}\right) \\
& =\frac{I_{2}^{\prime \prime}}{J_{2}^{\prime \prime}}\left(P J_{1}^{\prime}+J_{2}^{\prime}\right) \\
& =\frac{I_{1}^{\prime \prime}}{J_{1}^{\prime \prime}}\left(P J_{1}^{\prime}+J_{2}^{\prime}\right)
\end{aligned}
$$

equation (C)

The discharge of suspended sediment in the sampling zone for one size range, $\mathrm{Q}_{\mathrm{S}}{ }^{\prime}$, can be computed from size analyses and concentrations of depth-integrated samples and from water discharge through the sampled zone. The sediment samplers, US DH-48, US D-43, and US D-49, used for collecting depthintegrated samples do not normally sample within about 0.3 or 0.4 foot of the bottom unless they settle into the bed. As most samples at the normal sections were taken with the hand sampler DH-48, the assumption has been made for this report that the sampled zone extends from the water surface to 0.3 foot above the stream bed. In shallow streams several percent of the streamflow and a larger percentage of the suspended-sediment discharge may be discharged within 0.3 foot of the bed. Integration of the velocity equation (3) (Einstein, 1950, p. 8) in the form

$$
\overline{\mathrm{u}}_{\mathrm{y}}=5.75 \sqrt{32.2 \mathrm{~S}_{e^{R^{\prime}}}} \log _{10} \frac{30.2 \mathrm{yx}}{\mathrm{k}_{\mathrm{s}}}
$$

was the basis for the curves of figure 45 for P equal to $4,8,11$, and 14. In this equation \bar{u}_{y} is the time-averaged velocity at a distance y above the streambed, S_{e} is the energy gradient, and R^{\prime} is the hydraulic radius with respect to the grain (according to Einstein). P is usually about 11 , but figure 45 was prepared to include a wide range of P because certain experimental determinations of P, or at least of a quantity that is considered to be analogous to P, may cover a wide range.

Figure 45 can be used to determine the approximate proportion of the total streamflow that the sediment sampler traversed. The accuracy of the proportion depends on the closeness of agreement between the velocity equation and the average actual velocity profile for the cross section. The proportion expressed as a fraction can be multiplied by the total streamflow, in cubic feet per second; by the average concentration from depth-integrated

Figure 45.--Vertical distribution of streamflow.
samples, in parts per million; and by the constant 0.0027 to compute the sediment discharge through the sampling zone.1/

The next step in the solution of equation (C) is to compute $\mathrm{i}_{\mathrm{B}} \mathrm{Q}_{\mathrm{B}}$ according to Einstein's procedure or modifications of his procedure. Then equation (C) can be solved by trial and error because $I_{1}{ }^{\prime \prime}, \mathrm{I}_{2}{ }^{\prime \prime}, \mathrm{J}_{1}{ }^{\prime}, \mathrm{J}_{2}{ }^{\prime}, \mathrm{J}_{1}{ }^{\prime \prime}$, and $\mathrm{J}_{2}{ }^{\prime \prime}$ are determined by z and known quantities. Figure 46 shows an approximate relationship that can be used to obtain a good first approximation of \mathbf{z}_{2}. Two or three trial solutions of equation (C) should determine \mathbf{z}_{2} to the nearest 0.01 if that much accuracy is desired.

The z_{2} as computed from equation (C) is the one numerical value of z that will give the measured discharge of suspended sediment in the sampled zone and also be consistent with the computed $\mathrm{i}_{\mathrm{B}} \mathrm{Q}_{\mathrm{B}}$. It is also the one numerical value for which the

[^5]
Figure 46.--Approximate relation of z_{2} to the ratio of suspended-sediment discharge in the sampling zone to bed-load discharge.
same suspended-sediment discharge is computed by the modified Einstein procedure for the ranges of small particle sizes as by the modified procedure for the larger particle sizes. (See p. 96 for discussion of differences between the application of the modified Einstein procedure to the smaller particle sizes and to the larger particle sizes.) Because inaccuracies in determining the suspended-sediment discharge and in computing $i_{B} Q_{B}$ are likely to be relatively large when these quantities are small, z_{2} should be computed from equation (C) for a size range that has appreciable quantities of bed-load discharge and of suspended-sediment discharge in the sampled zone. For the Niobrara River, the size range from 0.125 to 0.25 millimeter seems to be best suited for the computation of z_{2} from equation (C). This size range, which has a geometric mean size of 0.00058 foot, is sometimes referred to as the reference size.

After z_{2} has been computed for the reference size range, z_{2} 's for the other size ranges are computed in proportion to the 0.7 power of the fall velocities of the geometric mean particle sizes. This computation is simplified by use of plate 1 or a table that is based on plate 1. This plate gives the multipliers for computing z_{2} 's for other size ranges from z_{2} for the 0.125 to 0.25 millimeter range.

If the total sediment discharge of a stream is measured at a contracted section, another type of z can be computed by trial and error. This type of z, designated z_{3}, will for a given size range make the computed total sediment discharge through a normal section equal the measured discharge of sediment at the contracted section. Let $Q_{s}{ }^{\prime \prime \prime}$ be the measured discharge, in tons per day, of sediment of a given size range that passes through the contraction. If total sediment discharge is computed at the contracted section, then

$$
Q_{S}{ }^{\prime \prime \prime}=Q_{S}{ }^{\prime \prime}+i_{B} Q_{B}
$$

and from equation (B)

$$
\begin{aligned}
Q_{S}{ }^{\prime \prime \prime} & =i_{B} Q_{B}\left(P I_{1}{ }^{\prime \prime}+I_{2}{ }^{\prime \prime}\right)+i_{B} Q_{B} \\
& =i_{B} Q_{B}\left(P I_{1} \prime \prime+I_{2}{ }^{\prime \prime}+1\right)
\end{aligned}
$$

Substitution in equation (C) gives

$$
\frac{Q_{S}^{\prime}}{Q_{S}{ }^{\prime \prime \prime}}=\frac{1}{\left(\mathrm{PI}_{1}^{\prime \prime}+\mathrm{I}_{2}^{\prime \prime}+1\right)} \frac{\mathrm{I}_{1}^{\prime \prime}}{\mathrm{J}_{1}^{\prime \prime}}\left(\mathrm{PJ}_{1}^{\prime}+\mathrm{J}_{2}^{\prime}\right) \quad \text { equation (D) }
$$

The z_{3} 's can be computed by trial and error from equation (D).

COMPUTATION OF SHEAR VELOCITY

Another major difference between the Einstein and the modified procedures is in the computation of the shear velocity with respect to the sediment particles. In the modified procedure the shear velocity, $\sqrt{32.2(\mathrm{SR})_{\mathrm{m}}}$, is computed from a slight modification of equation (9) (Einstein, 1950, p. 10). The modified equation is

$$
\bar{u}=5.75 \sqrt{32.2(\mathrm{SR})_{\mathrm{m}}} \log _{10} \frac{12.27 \mathrm{dx}}{\mathrm{k}_{\mathrm{s}}} \quad \text { equation (E) }
$$

or $\quad u_{m}=\frac{\bar{u}}{5.75 \log _{10} \frac{12.27 d x}{k_{s}}}$
in which $\overline{\mathrm{u}}$ is the average velocity for the cross section and is usually taken from a streamflow measurement-
$(S R)_{m}$ is the quantity that is obtained by solving equation (E) for $S R$ for a known numerical value of \bar{u}

Note that the depth d is used under the \log sign rather than R^{\prime} as given by Einstein. In equation (E), x is indirectly a function of the shear velocity, so the equation must be solved by trial. However, the first guess for \mathbf{x} is frequently close enough to make a second trial computation unnecessary.

Shear velocities, u_{m}, computed from equation (E) for the Niobrara River near Cody are usually much smaller than the shear velocities as computed by the Einstein procedure. Therefore, the mean velocities computed by the Einstein procedure are usually appreciably higher than measured average velocities. Shear velocities, u_{m}, being based on measured velocities in the cross section, probably are more representative of the sediment transporting power of a stream than are shear velocities as computed by the Einstein procedure. However, the use of shear velocities, u_{m}, that are based on actual velocities probably makes these. shear velocities not directly applicable to the computation of bedload discharge from the Ψ_{*} versus Φ_{*} relationship of plate 2. Ψ_{*} is the intensity of shear for sediment grains of a size range and is computed from equation (F) , Φ_{*} is the intensity of bedload transport.

COMPUTATION OF THE INTENSITY OF BED-LOAD TRANSPORT

According to the Einstein procedure, the intensity of bed-load transport is computed from a basic equation for shear intensity Ψ_{*} and three graphs. The equation (Einstein, 1950, p. 37,
equations 49 and 54) is

$$
\Psi_{*}=\xi Y\left(\beta / \beta_{x}\right)^{2}\left(S_{s}-1\right) \frac{D}{S_{e} R^{\prime}}
$$

equation (F)
in which \mathcal{E} and Y are two correction factors to be defined by graphs
β and β_{x} are certain logarithmic functions
S_{S} is the specific gravity of the sediment particles
D is the geometric mean diameter of the sediment par-
ticles of a size range
Also, Ψ_{*} computed from equation (F) is related to the intensity of bed-load transport, Φ_{*}, by a theoretical equation (Einstein, 1950, p. 37, equation 57). The constants in the equation were determined by Einstein from bed-load experiments in which uniform sediment was used. Plate 2 gives the curve that represents the equation for the relation between Ψ_{*} and Φ_{*}.

If $(S R)_{m}$ is to be used in place of $S_{e^{\prime}} R^{\prime}$, equation (F) presumably no longer applies directly. That is, it computes a Ψ_{m} that is numerically different than Ψ_{*}. Consequently, the Ψ_{m} versus Φ_{*} relationship cannot be expected to be the same as the $\Psi *$ versus Φ_{*} relationship.

A further objection to the direct use of equation (F) in the modified procedure is that the curve (Einstein, 1950, fig. 7) for ξ in terms of D / X (X is a characteristic grain size or characteristic distance, in feet) seems to have an incorrect slope for small sand sizes. A slope that might be correct for z 's that are assumed to vary directly with the fall velocity cannot be expected to be correct for z 's that vary with about the 0.7 power of the fall velocity.

If the z_{1} 's or z_{3} 's for different ranges of sediment sizes are known and the sediment discharges through the sampled zone for these size ranges can be determined, part of the $\boldsymbol{\xi}$ versus D / X relationship can be computed. To make the computations, equation (C) is used in the form

$$
\mathrm{i}_{B} Q_{B}=\frac{J_{1}^{\prime \prime} Q_{s}^{\prime}}{I_{1}^{\prime \prime}\left(P J_{1}^{\prime}+J_{2}^{\prime}\right)}
$$

Then from an equation given by Einstein (1950, p. 59, step 34) plus self-evident transformations

$$
\Phi_{*}=\frac{\mathrm{i}_{\mathrm{B}} \mathrm{Q}_{\mathrm{B}}}{43.2 \mathrm{w} 1,200 \mathrm{i}_{\mathrm{b}} \mathrm{D}^{3 / 2}}
$$

The constants of Einstein's equation in foot-pound-second units equal 1,200 , and i_{b} is the fraction of the bed material in the size range. From Φ_{*} and plate $2, \Psi_{*}$ can be determined. Finally, ξ can be computed from equation $(\underset{*}{*})$. Figure 47 shows the relationship between computed ξ and D / X. Although the points scatter considerably, the slope of most lines that are drawn through individual sets of points averages about 45 degrees for z^{\prime} 's that vary as the 0.7 power of the fall velocity.

A change in the assumed relation between z and the fall velocity greatly changes the slope of the lines on figure 47 as the computations for May 11,1950 , show. A z of 0.68 for the size range from 0.125 to 0.250 millimeter was used with z 's that were varied with the 1.0 power of the fall velocity and also with z's that were varied with the 0.7 power of the fall velocity. The slope of the line for variation with the 1.0 power of the fall velocity was more than double that for variation with the 0.7 power.

As z becomes smaller, the slope of the lines on figure 47 becomes flatter. (See fig. 48 and pairs of slopes on fig. 47 for May 11, 1950, and Aug. 3, 1951.) The tendency for the slope of the \mathcal{F} versus D / X curve to become flatter as z decreases has been established only for a fixed relation between z and fall velocity. An incomplete analysis of available data has not yet established the relation of figure 48 for z 's that are determined for different size classes without use of such a fixed relation. Though figure 48 may indicate a possible limitation on an assumed variation of ξ with D / X, yet ξ can fairly safely be assumed to vary inversely with D / X within a range of $z^{\prime} s$ of perhaps 0.5 to 0.8 for the size class from 0.125 to 0.250 millimeter. Also, as X is constant for any one set of points on figure 47, $\boldsymbol{\xi}$ varies nearly inversely with D throughout the ranges of size for which $Q_{S}{ }^{\prime}$ was large enough to define a point on the figure, or up to a size of at least 0.5 millimeter.

Variations in X are not large and do not seem to explain any significant amount of the scatter of points on figure 47. This scatter in computed ξ^{\prime} 's appears to be characteristic whenever z's are determined individually or from an average curve and are then used to compute corresponding $\boldsymbol{\xi}$'s.

If ξ is assumed to be inversely proportional to D below some undefined particle size, then according to equation (F) Ψ_{*}, and consequently Φ_{\star}, does not change from one range of particle sizes to another below this undefined size. A question still remains as to how tr compute Ψ_{*} or a function to replace Ψ_{*}.

Figure 47.--Relation between ξ and D / X for the geometric mean of three ranges of particle sizes 0.062 to 0.125 mm , 0.125 to 0.250 mm , and 0.250 to 0.500 mm .

Figure 48.--Approximate relation between z for sediment in size range of 0.125 to 0.250 mm and slope of the $\boldsymbol{\xi}$ plotted against D / X curve.

Einstein (1950, p. 10) states that sediment transport "is a function of a flow function of the type":

$$
\Psi=\left(\mathrm{S}_{\mathrm{s}}-1\right) \frac{\mathrm{D}_{35}}{\mathrm{R}^{\prime} \mathrm{S}_{\mathrm{e}}}
$$

or for the modified procedure in which $(S R)_{m}$ differs from $S_{e} R^{\prime}$

$$
\begin{aligned}
\Psi_{\mathrm{m}} & =\left(\mathrm{S}_{\mathrm{s}}-1\right) \frac{\mathrm{D}_{35}}{(\mathrm{SR})_{\mathrm{m}}} \\
& =\frac{1.65 \mathrm{D}_{35}}{(\mathrm{SR})_{\mathrm{m}}}
\end{aligned}
$$

equation (H)
in which D_{35} is the particle size of the bed material at which 35 percent by weight of the grains is finer. Equation (H) is used to compute Ψ_{m} for some size ranges.

Computations of the type that determined the points of figure 47 cannot be made from available field data to define the particle size at which D or D / X is no longer inversely proportional to ξ. So for the ranges of larger particle sizes the assumption was made that $\xi_{Y} Y\left(\beta / \beta_{x}\right)^{2}$, which is a term in equation (F) for computing Ψ_{*}, can be replaced by 0.4 in a corresponding equation for Ψ_{m}. Actual determinations of $Y\left(\beta / \beta_{x}\right)^{2}$ have ranged from about 0.3 to 0.6 , and for these larger particle sizes $\xi=$ 1.00. Throughout the range of particle sizes, the quantity Ψ_{m} is computed from the equations

$$
\begin{aligned}
\Psi_{\mathrm{m}} & =\frac{1.65 \mathrm{D}_{35}}{(\mathrm{SR})_{\mathrm{m}}} \\
\Psi_{\mathrm{m}} & =0.4 \frac{1.65 \mathrm{D}}{(\mathrm{SR})_{\mathrm{m}}} \\
& =\frac{0.66 \mathrm{D}}{(\mathrm{SR})_{\mathrm{m}}}
\end{aligned}
$$

equation (H)
equation (I)
and the larger Ψ_{m} from these equations is used for each geometric mean particle size. In terms of particle size, the shift from equation (H) to equation (I) comes at $2.5 \mathrm{D}_{35}$.

One further modification was made in the computation of the intensity of bed-load transport. This modification was based on comparison, for the reference size range from 0.125 to 0.250 millimeter, of average computed z_{2} 's with averages of the more directly determined z_{1} 's and z_{3} 's. An average z_{1} and an average z_{3} for the reference size were computed from the data that
were plotted on figures 40 and 42. Several computations of z_{2} were made from equation (C). For insertion in equation (C), ${ }^{i}{ }_{B} Q_{B}$ was computed from Φ_{*} that, in turn, was determined from Ψ_{m} and plate 2. Twenty of these computed z_{2} 's averaged about 0.80 as compared to averages of 0.68 for $z_{3}{ }^{\prime} s$ and 0.53 for z_{1} 's. Therefore, the z_{2} 's appeared to be appreciably too high.

Another check on the size of the z_{2} 's can be made. The z_{2} 's for the size range from 0.25 to 0.5 millimeter were computed from the z_{2} 's for the reference size range and were found to be too large to give approximately correct sediment discharges by equation (A), which is sensitive to small changes in z when z is large. To reduce the average z_{2} nearer to the average z_{1} and z_{3}, the bed-load transport intensity, Φ_{*}, was arbitrarily divided by 2 . This division by 2 reduced z_{2} by about 0.10 .

NECESSARY. BASIC DATA

The Einstein procedure was modified to make as effective use as possible of readily measurable base data for a single section. The required data for computation of total sediment discharge by the modified procedure at a particular time are:

1. Stream width, average depth, and mean velocity from a streamflow measurement or other suitable source.
2. Average concentration of suspended sediment preferably from depth-integrated samples, but the concentration can be computed above some specific distance from the stream bed from point-integrated samples.
3. Size analyses of the suspended sediment that was included in the average concentration.
4. Average depth at the verticals where the suspendedsediment samples were collected.
5. Size analyses of the bed material.
6. Water temperature.

For a stream such as the Niobrara River near Cody, bedmaterial samples that were collected over a period and a range of water discharge may be averaged, because the bed-material size distribution does not seem to change significantly with either time or water discharge. (See p. 23-25.) If the bed-material size distribution at a section is likely to change from time to
time, bed-material samples should be collected for size analyses at the time for which each computation of total sediment discharge is to be made.

In addition to these required data, point-integrated samples might be collected and analyzed for size and concentration. Then z_{1} 's can be determined for comparison with z_{2} 's. Also, total sediment discharge can be computed on the basis of the z_{1} 's for comparison with total sediment discharge that was based on z_{2} 's. However, point-integrated samples are not essential to the method, and z_{1} 's do not give more accurate computed sediment discharges.

A good cross section for computations by the modified Einstein procedure has a uniform lateral distribution of depth, velocity, and concentration, a mean velocity at least 2.0 feet per second, and an average depth of at least 1.0 foot; also it is in a straight, undisturbed reach of alluvial channel. Sections far from ideal usually seem to give reasonably accurate computations even though the stream slope is changing somewhat along the reach, the section is at a slight contraction, or part of the streambed is scoured down to bedrock. The flow does not have to be perpendicular to the section; but in computing the mean velocity and the cross-sectional area, any horizontal-angle correction must be applied to the width and not to the velocity. Sediment transportation varies as an exponential power of the velocity. Hence the sediment transportation should be computed along the direction of flow. The horizontal-angle corrections canbe applied to measured lateral distances. This application of angle corrections is consistent with the assumption that sediment transportation varies directly with width.

No simple statement can now be made with respect to allowable variations in lateral distributions of depth and velocity in a cross section intended for use with computations of total sediment discharge by the modified procedure. In general, the lateral distribution of concentration probably is not critical if adequately defined by samples. If the flow and sediment across the section are not thoroughly mixed, for example, close below the mouth of a tributary, then the section may not be usable. Also, any section in which most of the area has velocities higher than 2.0 feet per second is probably satisfactory with respect to lateral distributions. Sections in which a relatively small area of the cross section has low velocities are usually satisfactory, but sections with large cross-sectional areas in which the flow is below 1.5 feet per second may not be satisfactory. Of course, such sections can be divided into two or more parts, and separate computations can be made for each if enough samples are taken across the stream.

For August 3, 1951, section C-2 was divided into two parts for sediment computation by the modified Einstein procedure. The total sediment discharge so computed varied little from that computed for the cross section as a unit. For section C-6 the cross section seemed to be least uniform laterally on August 3 and July 18, 1951, and on September 26, 1952. Sediment discharge on these 3 days was computed for 2 parts of the section. The sum of the sediment discharges for the 2 parts exceeded the discharge for the section as a whole by 5 percent for July 18, 1951. Even though the cross sections were far from uniform on the other 2 days, the computed sediment discharge was changed only about 1 percent by dividing the section into 2 parts.

SAMPLE COMPUTATION OF TOTAL SEDIMENT DISCHARGE:

Probably the best way to learn or to evaluate the modified Einstein procedure is to follow through a sample computation. The computation form currently used is shown as plate 3. Computations for section C-2 of the Niobrara River near Cody for June 19, 1952, are entered on the form and will be explained in detail. Vertical lettering indicates information that is part of the basic computation form. Information and computations that are inserted on the form are in slant lettering. Most computations are to slide-rule accuracy only. Column numbers have been added to the form to simplify the explanations. In general, the terminology suggested by Einstein (1950) is followed, and symbols that have not already been defined are defined where they are first mentioned.

Figures of base data are first entered on the computation form in the box headed "Preliminary data and computations." The width, mean velocity, average depth, and average depth d_{s} at the sampling verticals all in foot-pound-second units are 118, 2.08, 0.98 , and 1.22 , respectively. These units are used throughout the computations except for sediment discharges that are represented by symbols with a Q and are in tons per day. On the average 65 percent of the bed material is finer than 0.00105 foot, and 35 percent is finer than 0.00075 foot. The mean concentration from depth-integrated samples is $262 \mathrm{ppm} ; \mathrm{Q}_{\mathrm{SM}}$, measured sediment discharge (product of concentration in parts per million, streamflow in cubic feet per second, and 0.0027) is 163 tons per day; and water temperature is $64^{\circ} \mathrm{F}$. The particle-size analyses of the suspended sediment at the time for which the computation is to be made, the average size distribution of suspended sediment for a mean concentration of 262 ppm , and the size distribution of the suspended sediment at the contracted section are listed at the bottom of this box on the computation form. The average size distribution is obtained for each size range from average
curves of percentage of sediment in each size range versus sediment concentration in the sampled zone. An average size distribution may show large inaccuracies in an individual size analysis and indicate that the individual analysis should not be used. Also, the average size analyses can be used, and have been used although the computations are not shown on plate 3 , to compute the sediment discharge at a normal section. (See p. 102.)

The computations begin with the determination of $(S R)_{m}$ from equation (E) (p. 83) for $\bar{u}=2.08$ feet per second.

$$
\sqrt{(\mathrm{SR})_{\mathrm{m}}}=\frac{2.08}{5.75 \sqrt{32.2} \log _{10} \frac{12.27 \mathrm{dx}}{\mathrm{k}_{\mathrm{s}}}}
$$

Assume on the basis of past experience or an approximate computation on scratch paper that $x=1.54$. Then

$$
\begin{aligned}
\sqrt{(\mathrm{SR})_{\mathrm{m}}} & =\frac{2.08}{32.6 \log _{10} \frac{12.27 \cdot 0.98 \cdot 1.54}{0.00105}} \\
& =0.0150 \\
(\mathrm{SR})_{\mathrm{m}} & =0.000225
\end{aligned}
$$

The shear velocity is computed from

$$
\begin{aligned}
u_{\mathrm{m}} & =\sqrt{(\mathrm{SR})_{\mathrm{m}}} \sqrt{\mathrm{~g}} \\
& =0.0150 \cdot 5.68 \\
& =0.0853
\end{aligned}
$$

The kinematic viscosity, ν, is 0.0000114 square foot per second at $64^{\circ} \mathrm{F}$. The thickness of the laminar sublayer, δ, is
so

$$
\begin{aligned}
\delta & =\frac{11.6 \nu}{u_{\mathrm{m}}} \\
& =\frac{11.6 \cdot 0.0000114}{0.0853} \\
& =0.00155 \\
\frac{\mathrm{k}_{\mathrm{s}}}{\delta} & =\frac{0.00105}{0.00155} \\
& =0.68
\end{aligned}
$$

and from figure 44, $\mathbf{x}=1.54$. As the assumed \mathbf{x} is the same as the computed x, no recomputation is necessary. In fact the whole quantity under the log sign is solarge that \mathbf{x} can differ considerably from its assumed numerical value without necessitating a recomputation.

By definition

$$
\begin{aligned}
P & =2.303 \log _{10} \frac{30.2 \mathrm{dx}}{\mathrm{k}_{\mathrm{S}}} \\
& =2.303 \log _{10} \frac{30.2 \cdot 0.98 \cdot 1.54}{0.00105} \\
& =10.7
\end{aligned}
$$

Also $A^{\prime}=d_{n} / d_{s}$ and d_{n} is the vertical distance, in feet, not sampled; that is, the distance from the bottom of the sampled zone to the stream bed. Thus

$$
\begin{aligned}
A^{\prime} & =\frac{0.3}{1.22} \\
& =0.246
\end{aligned}
$$

Figure 45 indicates that 80 percent of the streamflow was sampled. The discharge through the sampled zone, $Q_{t s}$ ', of sediment particles of all sizes is $163 \times 0.80=130$ tons per day.

The next major step is the computation of $i_{B} Q_{B}$. (See "Computation of $\mathrm{i}_{\mathrm{B}} \mathrm{Q}_{\mathrm{B}}$ " box on pl . 3.) Column 1 contains the geometric mean particle sizes in fractions of a foot for bed-material size ranges of 0.125 to $0.25,0.25$ to $0.5,0.5$ to $1.0,1.0$ to 2.0 , and 2.0 to 4.0 millimeters. Neither smaller nor larger sized particles would have appreciable bed-load discharges. These geometric mean sizes are the square roots of the products of the limits of the size ranges.

The intensity of shear on the particles, Ψ_{m}, is computed from equations (H) and (I)

$$
\begin{align*}
& \Psi_{\mathrm{m}}=\frac{1.65 \mathrm{D}_{35}}{(\mathrm{SR})_{\mathrm{m}}} \tag{H}\\
& \Psi_{\mathrm{m}}=\frac{0.66 \mathrm{D}}{(\mathrm{SR})_{\mathrm{m}}}
\end{align*}
$$

equation (I)
in which D is the geometric mean particle size from column 1. The number 1.65 is the specific gravity of the sediment particles
columns 8 to 11 and 13 and 14. Column 12 contains the ratio $\left(P J_{1}{ }^{\prime \prime}+J_{2}{ }^{\prime \prime}\right) /\left(\mathrm{PJ}_{1}{ }^{\prime}+\mathrm{J}_{2}{ }^{\prime}\right)$ for each range of particle sizes. These ratios are computed from $P=10.7$ and from entries in columns 8 to 11 . Column 15 contains the numerical values of $\mathrm{PI}_{1}{ }^{\prime \prime}+\mathrm{I}_{2}{ }^{\prime \prime}+1$.

Total discharge of sediment through the cross section is next computed for entry in column 16 (pl .3) by multiplying together figures from column 2 and ratios from column 12 for the ranges of fine particle sizes and figures from columns 4 and 15 for the ranges of coarser particle sizes. The sum of the figures in column 16 is the computed total sediment discharge at the section. Column 18 contains, for comparison, the measured discharges of suspended sediment at the contracted section. The percentages by which the computed sediment discharges in the size ranges and the total sediment discharge differed from the measured sediment discharges at the contracted section are given in column 19.

The computation methods are different for the ranges of the finer particle sizes than for the ranges of the coarser particles because of two limitations. In the reference size range the two methods will compute the same sediment discharge if z_{2} is precisely correct and if $i_{B} Q_{B}$ is added to the computed discharge of the finer particles. (In the sample computation, ${ }^{i}{ }_{B} Q_{B}$ is not added to the computed discharge of sediment for the two ranges of smallest particle sizes because it is negligibly small.) Theoretically, either the $\left(\mathrm{PJ}_{1}{ }^{\prime \prime}+\mathrm{J}_{2}{ }^{\prime \prime}\right) /\left(\mathrm{PJ}_{1}{ }^{\prime}+\mathrm{J}_{2}{ }^{\prime}\right)$ method or the $\mathrm{PI}_{1}{ }^{\prime \prime}+\mathrm{I}_{2}{ }^{\prime \prime}+1$ method can be used throughout the range of particle sizes. Practically, the first method is limited to ranges of particle sizes for which $Q_{S}{ }^{\prime}$ can be determined with fair accuracy; the second method, to ranges of particle sizes for which i_{b} can be determined with fair accuracy. Another practical limitation on the choice of method is that a given percentage of variation in z_{2} changes the computed sediment discharges more by the first method when z_{2} is large and more by the second method when z_{2} is small.

The bottom part of the computation form (pl.3) is for computations that are based on z_{1} 's from point-integrated samples, z_{3} 's from measured sediment discharges at a contracted section (that is, a section at which nearly total sediment discharge can be measured), or $z_{4}{ }^{\prime} s$ (z^{\prime} s computed from an empirical equation). Columns 1, 2, 5, and 7 are filled in with the same figures as for the computation that is based on z_{2} 's. The z for the reference size is listed in column 6. Then the z 's for other size ranges are computed by use of plate 1 and are also entered in column 6.

The sample computation on plate 3 is for a z_{4} computed from the equation $z_{4}=4.6\left(V_{S}\right)^{0.7}$. Equation (C) can be used to compute ${ }^{i_{B}} Q_{B}$ for the reference size range. Thus if $z_{4}=0.69$,
$A^{\prime}=0.246$, and $A^{\prime \prime}=0.00118$;

$$
\begin{aligned}
\mathrm{i}_{B} Q_{B} & =\frac{J_{1}{ }^{\prime \prime} Q_{S}^{\prime}}{\mathrm{I}_{1}^{\prime \prime}\left(\mathrm{PJ}_{1}^{\prime}+\mathrm{J}_{2}{ }^{\prime}\right)} \\
& =\frac{2.21 \cdot 51}{3.90(10.7 \cdot 0.62-0.47)} \\
& =4.69
\end{aligned}
$$

For other size ranges in which $Q_{S}{ }^{\prime}$ cannot be measured satisfactorily, ${ }^{i} B_{B} Q_{B}$ can be assumed to be proportional to the figures in column 8 of the upper right computation box. For the reference size, the ratio of bed-load discharges is $4.69 / 8.30$. The figures of column 8 can each be multiplied by this ratio to obtain the figures for column 4 of the lower computation box. The figures in columns 8 to 19 are computed in the same way as for the method that is based on $z_{2}{ }^{\prime}$ s.

As the sample computations are not based on z_{1} 's, additional suggestions might be helpful. The z_{1} 's can be used directly for each size range for which they are known, the z_{1} for the reference size only can be used and the other $z^{\prime} s$ can be computed from plate 1 , or the z_{1} 's can be weighted to obtain an average z_{1} for the reference size. The last method was used for this report. The z_{1} 's for size ranges other than the reference size were divided by the multipliers from plate 1 to obtain z_{1} 's that would be equivalent to z_{1} 's for the reference size. The equivalent z_{1} 's and the z_{1} for the reference size were then weighted according to percentage of sediment in their size ranges to get a weighted z_{1} for the reference size. Thus all the z_{1} 's were given at least some weight. The z_{1} 's for all other size ranges were computed from the multipliers of plate 1.

The measured sediment discharge at the contracted section is measured only in the sense that it is based more or less directly on the concentration of samples that were collected in the contracted section. Several computations were involved in trying to adjust the water discharge and sediment concentration at the contracted section to make them comparable to those at a normal section. On June 15, 1951, at section C-2 a water discharge of 322 cfs was measured at $11 \mathrm{a} . \mathrm{m}$. , and sediment samples were collected at 12:10 p.m. Time of travel of water from the gaging station to section C-2 was estimated to be 30 minutes on the basis of measured velocity and distance between sections. Thus at the gaging station the equivalent measuring and sampling times were 10:30 a.m. and 11:40 a.m. Between these 2 times the stage at the gage dropped 0.04 foot, which according to the rating table is equivalent to a decrease in flow of 17 cfs . Hence, the water discharge at section $\mathrm{C}-2$ at 12:10 p.m. is computed to be 305 cfs .

100 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

The measured sediment discharges at the contracted section (tables 34-36) have been adjusted for time of travel of the water and for changes in flow (p. 97-98) to make them directly comparable with computed sediment discharges at normal sections. Any one of these measured discharges may, however, be incorrect by 20 percent or more.

Variations of the modified Einstein procedure include computations that are based on $z_{1}^{\prime} s, z_{4}$'s, or on the use of average size distributions rather than actual analyses of suspended sediment.

Sediment discharges computed from the z_{1} 's, which were determined from the analyses of point-integrated samples, are given in table 35 and are plotted on figure 50 . The method of computation is explained on pages 96-97. These computed sediment discharges compare well with measured sediment discharges at the contracted section when the z_{1} 's for the size range from 0.125 to 0.250 millimeter are relatively large and hence are comparable with z_{2} 's. The computed total sediment discharges tend to become too low as the z_{1} 's decrease.

Total sediment discharge of a stream can be computed from z_{4} 's, the z 's that are computed from an equation. The equation

$$
\mathrm{z}_{4}=4.6\left(\mathrm{~V}_{\mathrm{S}}\right)^{0.7}
$$

equation (J)
was used. This equation is based on variation of $z_{1}^{\prime \prime} s$ and $z_{3}{ }^{\prime} s$ with the 0.7 power of the fall velocity (figs. 40 and 42). The average of 10 determinations of z_{3} for the Niobrara River near Cody and 4 determinations of z_{3} for the Middle Loup River near Dunning, Nebr., was 0.68 for the size range from 0.125 to 0.250 millimeter. The corresponding average of fall velocities was 0.0645 foot per second. The equation defines a line on logarithmic coordinates that has a 0.7 slope and passes through the point that represents these averages. After the z_{4} 's are computed from the equation, the method of computation is the same as for z_{1} 's. For ease of computation, plate 1 can be used to compute z_{4} 's for other size ranges from the z_{4} for the reference size range. The fall velocities for different temperatures and ranges of particle sizes are given on figure 51. Total sediment discharges computed from the z_{4} 's are given in table 36 and are plotted on figure 50. Of course, if z_{4} exactly equals z_{2} for the reference size range and for a particular time and cross section, the tonnages computed in the upper and the lower parts of the main computation box of plate 3 will be the same except for small differences in rounding numbers during the computations.

One source of inaccuracy in computations of total sediment discharge by the modified Einstein procedure is unrepresentative size analyses of suspended sediment at the normal sections. As

Table 34.--Comparison of computed sediment discharge from modified Einstein procedure applied to normal sections with measured sediment discharge at contracted section

Date	Section	Sediment discharge (tons per day)								Percentage of measured sediment discharge
		$\begin{array}{\|l\|} \hline \text { Less } \\ \text { than } \\ 0.066 \end{array}$ mm	$\begin{aligned} & 0.062 \\ & \text { to } \\ & 0.125 \end{aligned}$	$\begin{aligned} & 0.125 \\ & \text { to } \\ & 0.25 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 0.25 . \\ & \text { to } \\ & 0.50 \end{aligned}$	$\begin{gathered} 0.50 \\ \text { to } \\ 1.00 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} 1.00 \\ \text { to } \\ 2.00 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} 2.00 \\ \text { to } \\ 8.00 \\ \mathrm{~mm} \end{gathered}$	Total	
1950										
Mar. 3...	Gaging station.	328	436	883	41	57	6	2	2,120	113
	Contracted...	243	374	842	337	19	56	1,870	
May ll...	Gaging station.	324	725	1,345	675	89	12	6	3,180	95
	contracted.....	301	501	1,470	969	100	3,340	
Aug. 30..	Gaging station.	436	251	. 649	351	46	4	1	1,740	99
	Contracted.....	475	229	493	493	70	1,760	
$\frac{1951}{\text { Apr }} \frac{27}{} .$										
	Gaging station. Contracted.....	190	473 448	948 829	504 582	70 112	7	3	2,200 2,240	98
May 10...	Gaging station.	77	218	5561	316	4.4	4	1	1,220	92
	Contracted.....	93	213	559	426	40	\ldots	\ldots	1,330	
June 15..	c-2 1/,..	62	289	988	576	45	2	\ldots	1,960	187
	Contracted.	105	178	766	\ldots	1,050	
July 18..	c-2.	42	110	397	239	17	1	\ldots	806	90
	Contracted	72	126	405	261	36	900	
	c-6 2/.........	43	28	425	285	39	2	\ldots	822	86
	contracted.....	77	134	433	278	38	\cdots	960	
Aug. 3...	$\mathrm{c}-21 / \ldots$	418	7	242	182	17	1	\cdots	867	56
	Contracted 3/..	328	203	499	468	31	16	16	1,560	
	c-6...	212	202	515	371	58	5		1,360	83
	Contracted 3/..	344	213	525	492	33	16	16	1,640	
Sept. 6..	c-2.	4,190	1,040	1,960		142	24	13		85
	Contracted	4,140	1,010	2,220	2,320	303	101	10,100	
	c-6...........	2,950	825	1,740	875	152	31	8	6,580	84
	Contracted.	3,220	785	1,730	1,800	236	78	7,850	
$\frac{1952}{\text { Apr. }} 1 .$										
	c-2..	1,020	1,030	2,240	1,140	130	20	11	5,590	75
	Contracted L/ . ${ }^{\text {a }}$	963	1,410	2,890	2,000	148	7,410	
May 8....	c-2.......	216	436	617	382	39	3	1	1,690	83
	contracted 5/..	284	304	832	568	41	\ldots	2,030	
	c-6............	192	336	507	256	29	1	1,320	71
	Contracted.	262	280	767	524	37	1,870	
June 19..	Gaging station.	4	67	259	133	11	\ldots	\ldots	514	107
	contracted.....	53	67	216	130	14	480	
	c-2.......	46	53	186	124	11		\ldots	420	89
	Contracted.	52	66	212	127	14	\ldots	470	
	c-6............	42	50	128	74	8	\ldots	\ldots	302	66
	Contracted.	51	64	207	124	14	\ldots	460	
Sept. 26.	Gaging station.	31	63	226	108	10	\ldots	\ldots	438	94
	- Contracted.....	42	65	223	126	9	465	
	c-2............	30	47	188	136	13	1	\ldots	415	112
	Contracted.	33	52	178	100	7	\ldots	370	
	c-6......	38	63	297	206	24	1	\ldots	629	146
	Contracted.	39	60	206	116	9			430	

See footnotes at end of table.

CHARGE FROM MODIFIED EINSTEIN

IMENT DISCHARGE, CONTRACTED
QN, IN TONS PER DAY
${ }^{\text {computed total sediment discharge }}$ rocedure based on z_{1} 's and $z_{4}{ }^{\prime}$ s ischarge at the contracted section.

Figure 51.--Variation of fall velocity with temperature.

108 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

Table 37.--Percentage comparison between sediment discharge computed by the modified Einstein procedure and measured sediment discharge at the contracted section

Date	Computed total sediment discharge at a normal section in percentage of measured discharge					
	$\begin{aligned} & \text { Less than } \\ & 0.062 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 0.062 \mathrm{to} \\ & 0.125 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 0.125 \mathrm{to} \\ & 0.250 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 0.250 \mathrm{to} \\ & 0.500 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { More than } \\ & 0.500 \mathrm{~mm} \end{aligned}$	All sizes
Gaging-station section						
1950						
Mar. 3..	135	117	105	122	87	113
May ll......	108	145	92	70	107	95
Aug. 30.....	92	110	132	71	73	99
1951						
Apr. $27 . . .$.	11	106	214	87	71	98
May 10......	83	102	100	74	122	92
$\text { June } \frac{1952}{19}$	83	100	120	102	79	107
Sept. 26....	74	97	101	86	111	94
$\text { July } \frac{1953}{8 . \ldots . .}$	92	114	144	105	44	114
Average...	92	111	114	90	87	102
Section $\mathrm{C}-2$						
1951						
June $151 /$.	59	162	129	. . . ${ }^{\text {a }}$	-....	187
July 18.....	58	87	98	92	50	90
Aug. 3 I/...	127	3	48	39	38	56
Sept. 6.....	101	103	88	53	44	85
Apr. $\frac{1952}{1 . \ldots}$	106	73	78	57	109	75
May 8.......	76	143	74	67	105	83
June 19.....	88	80	88	98	79	89
Sept. 26....	91	90	106	136	200	112
$\text { May } \frac{1953}{20 \ldots \ldots . .}$	106	91	87	121	193	100
Average...	89	95	88	89	111	91
Section C-6						
1951						
July 18.....	56	21	98	103	108	86
Aug. 3......	62	95	98	75	97	83
Sept. 6.....	92	105	101	49	61	84
1952						
May 8......	73	120	66	49	81	71
June 19.....	82	78	62	60	57	66
Sept. 26....	97	105	144	178	2/ 278	146
$\text { May } \frac{1953}{20 \ldots . . .}$	98	60	101	129	2/ 303	101
Average...	80	83	96	92	115	91

1 Incorrect size analysis; omitted from averages.
2 Used as 200 percent in computing average.
to high percentages, which frequently were based on small tonnages of sediment. All percentage figures of tahle 37 were based directly on sediment discharges in table 34.

Vertical distribution of sediment in the size range below 0.062 millimeter is so nearly uniform thaterrors in its computation by the modified Einstein procedure are almost negligible. That is, inaccuracy in the percentages in the column for sediment finer than 0.062 millimeter is due almost entirely to inaccurate basic information rather than to errors in computation. Similarly, large inaccuracies in percentages for the size range from 0.062 to 0.125 millimeter are due to unreliable basic information rather than to the computation procedure, for computation errors are necessarily small in this size range. Therefore, the percentages for the range of smallest particles and, to a slightly less degree, for the range of next larger sizes are measures of the inaccuracy of the basic data. Variations in these percentages and inaccuracy in averages of these percentages probably indicate approximately the minimum amount of inaccuracy to be expected in the computed percentages for the ranges of larger sizes.

Except for sediment larger than 0.5 millimeter (tonnages of such sediment are small), individual and average percentages from table 37 show about as close comparisons for sediment coarser than 0.125 millimeter as for the 2 ranges of smallest particles.

On the basis of the few computations that have been made with z^{\prime} 's from point-integrated samples, the use of z_{1} 's rather than trial-and-error z_{2} 's decreased the accuracy of the computations of total sediment discharge.

Total sediment discharges from z_{4} 's that were computed from equation (J) are plotted in figure 50. They are somewhat more erratic and average a little lower than the other computed sediment discharges. Also, an equation of this type for computing z_{4} 's contains no parameter of flow or turbulence and is not likely to be generally applicable to other streams than the one for which it is defined.

Total sediment discharges computed from average size distributions show no clear-cut advantages except when they are used in place of obviously incorrect suspended-sediment size analyses, such as those for section C-2 on June 15 and August 3, 1951.

The modified Einstein procedure with trial-and-error $z_{2}{ }^{\prime} s$ and with actual size analyses of the suspended sediment has not been applied to enough streams to learn its limitations. Six computed total sediment discharges for the Niobrara River near Valentine, Nebr., ranged from 76 to 129 percent and averaged 112
8. For sections $\mathrm{C}-1$ to $\mathrm{C}-10$ the total sediment discharge obtained by adding measured discharge of sediment finer than 0.125 millimeter to sediment discharge that was computed from the Einstein formulas for coarser particles averaged 111 percent (8 determinations) of the measured sediment discharge at the contracted section. Similarly computed sediment discharges, 8 for section $\mathrm{C}-2$ and 2 for the gaging-station section, were erratic and averaged several times the measured tonnages. The size distribution of the computed sediment discharge was usually much different than that of the measured sediment discharge.
9. The equation $z=V_{5} / 0.4 u_{*}^{\prime}$ is not applicable for computing an exponent that will agree with either the actual vertical distribution of suspended sediment, z_{1}, or the exponent, z_{3}, that will make the computed sediment discharge equal the measured sediment discharge at the contracted section. From one size range to another, z_{1} and z_{3} vary as about the 0.7 power of the fall velocity of the geometric mean particle size if the fall velocity is based on equations given by Rubey (1933). The shear velocity as computed from the velocity equation and from measured average velocities shows no consistent inverse variation with z_{1} or z_{3}. Also 0.4 , which represents the universal constant of turbulent exchange, k, is questionable. Three computations of k based on vertical distributions of velocity in the sampling zone ranged from 0.42 to 2.8 . The low k was for a time when z_{1} was unusually high, and the high k, for a time when z_{1} was unusually low.
10. For particle sizes smaller than 0.5 millimeter, Einstein's ξ (1950, p. 36) varies about inversely as the geometric mean particle size for z 's that are about 0.5 to 0.8 and that vary with the 0.7 power of the fall velocity.
11. A promising modified procedure based on Einstein's formulas was developed for computing total sediment discharge from streamflow measurements, depth-integrated samples, bed-material samples, and water temperatures. In 24 comparisons, some based on the gaging-station section and some on sections $\mathrm{C}-2$ and $\mathrm{C}-6$, the computed total sediment discharge ranged from 56 to 187 percent and averaged 97 percent of the measured sediment discharges at the contracted section. If 2 computations that were based on unrepresentative size analyses of suspended sediment were omitted, the remaining 22 comparisons ranged from 66 to 146 percent and averaged 95 percent of the measured sediment discharges at the contracted section.
12. The computation inaccuracies from the modified procedure for the size range of sediment smaller than 0.062 millimeter and to a slightly lesser degree for the size range from 0.062 to 0.125 millimeter are so small that the computed total sediment
discharges in these size ranges are good indicators of the accuracy of the basic information. Comparisons for sediment discharges in these two size ranges are little, if any, better than for the computed sediment discharges in the ranges of larger particle sizes. Similarly, average percentages for each normal section show that comparisons for computed total discharges of sediment of all sizes are as good or better than those for the computed discharges for the two ranges of smallest particle sizes. In these two ranges the inaccuracies are nearly independent of computation methods.
13. Size distributions of the total sediment discharges that were computed by the modified Einstein procedure agreed reasonably well with size distributions of the measured sediment discharges at the contracted section.
14. Principal disadvantages of the modified Einstein procedure for computing total sediment discharge are inaccuracies and uncertainties with respect to vertical velocity distribution and other variables and relationships of the Einstein procedure, amount of time required for the computations, and need for obtaining streamflow measurements and accurate size distributions of suspended sediment and bed material. Further development of the method should decrease these inaccuracies and uncertainties and shorten the required time for the computations.
15. Besides reasonably good accuracy of particle-size distribution and quantities of computed total sediment discharge, the outstanding advantage of the modified Einstein procedure for computing total sediment discharges is that it greatly reduces the necessary field work. Information is collected only at one cross section, and neither point-integrated samples nor water-surface slopes are required.
See page
G Discharge of bed material, in pounds per second 56
g The gravity constant, 32.2 feet per second per second 70
I_{1} Mathematical abbreviation which contains J_{1} 77
I_{2} Mathematical abbreviation which contains J_{2}.. 77
${ }^{i_{B}} Q_{B}$ Sediment discharge through the bed layer of particles of a size class, in tons per day. 78
${ }^{i} B_{B} q_{B}$ Sediment discharge through the bed layer of particles of a size class, in pounds per sec- ond per foot of width 78
$i_{b} \quad$ Fraction by weight of bed material in a size range 85
$J_{1} \quad$ Equals $\int_{A}^{1}\left(\frac{1-y}{y}\right)^{z} d y$ 77$J_{2} \quad$ Equals $\int_{A}^{1}\left(\frac{1-y}{y}\right)^{z} \log _{e}(y) d y$ and J_{2} is
always negative 77
K Constant for a given time and cross section to simplify Einstein's equation (34) 78
$\mathrm{K}_{1} \quad$ Constant to be defined for computing bed-mate- rial discharge. 59
$\mathrm{K}_{2} \quad$ Equals $43.2 \mathrm{~K}_{1}$ 59
$\mathrm{k} \quad$ The universal constant for turbulent exchange. 70
$\mathrm{k}_{\mathrm{s}} \quad$ Roughness diameter, that particle size of bed material for which 65 percent by weight is finer 75
M Slope, averaged for all verticals, of the semi- logarithmic graph of velocity versus $P / 2.303$. It is used to compute k 75
m Subscript denoting quantity that is computed according to the modified Einstein procedure 70
See page
P Equals 2. $303 \log _{10}\left(30.2 \mathrm{dx} / \mathrm{k}_{\mathrm{S}}\right)$ 77
$P_{c} \quad$ Percentage of suspended sediment finer than any given size at the contracted section 50
$P_{n} \quad$ Percentage of suspended sediment finer than any given size at the gaging-station section 50
$P_{u} \quad$ Percentage finer than any given size in the un- measured sediment discharge at the gaging- station section. 50
Q Water discharge 23
$Q_{B M}$ Sediment discharge of bed material (or assumed to be bed material), in tons per day 59
$Q_{S} \quad$ Discharge of sediment of a size range, in tons per day 78
$Q_{S M}$ Measured suspended-sediment discharge; the product of water discharge and total concen- tration of suspended sediment of all particle sizes, in tons per day 91
$Q_{t s}{ }^{\prime} \quad$ Sediment discharge through the sampled zone of all particle sizes, in tons per day 93
Q_{S} "' Measured suspended-sediment discharge through the contracted section of sediment of a given size range, in tons per day 82
q_{BM} Sediment discharge of bed material, in pounds per second per foot of width. 59
$\mathrm{q}_{\mathrm{S}} \quad$ Suspended-sediment discharge of particles of a size range, in pounds per second per foot of width 78
$\mathbf{R} \quad$ Hydraulic radius with respect to the sediment particles 79
$S_{e} \quad$ Slope of the energy gradient 56
S_{s} Specific gravity of the solid sediment particles. 84
$(S R)_{m}$ Computed product of slope and hydraulic radius from velocity equation and measured average velocity in the cross section 83

Table 1.--Streamflow measurements, Niobrara River near Cody, Nebr., ford section

Date	Made by	Width (feet)	$\begin{gathered} \text { Cross- } \\ \text { sectional } \\ \text { area } \\ \text { (sq ft) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Mean } \\ & \text { velocity } \\ & (f p s) \end{aligned}$	Gage height (feet)	Discharge (cfs)	```Number of sections```
1948							
Apr. 9..	Zellars.	126	108	3.48	1.16	376	48
Apr. 22.	. . do.	120	113	3.58	1.19	404	46
Apr. 27.	. . . do.	124	138	3.90	1.51	539	49
May 7...	. . .do...	112	118	3.28	1.16	387	44
May 13..	. do.	121	120	3.54	1.22	425	47
May 27..	. . .do.	119.5	93.9	3.26	1.01	304	42
June 1..	. . .do.	119	87.7	2.94	. 92	258	41
June 15.	...do...	120	89.5	3.11	. 96	278	54
June 23.	. . . do.	119	134	3.97	1.41	532	34
June 30.	. . . do...	118.5	100	3.58	1.12	358	43
July 13.	. . . do...	118	88.2	2.97	. 97	262	41
July 20.	. . .do.	119	118	3.81	1.20	450	42
Aug. 2..	. . .do.	118	84.4	3.15	. 99	266	42
Aug. 18.	. . .do...	118	85.7	2.89	. 94	248	53
Sept. 8.	. . .do...	116.5	80.0	3.00	. 91	240	57
oct. 13.	Vice....	115	83.9	3.10	. 98	260	29
1949							
Jan. 27.	Zellars.	119	116	2.42	1.47	281	27
Feb, 16.	...do...	117	112	2.87	1.23	322	34

Table 2.--Sediment-discharge measurements, ford section

Date	Time	Gage height (feet)	Water discharge (cfs)	Suspended sediment	
				Mean concentration (ppm)	Discharge (tons per day)
1948					
June 12.	1:20 p.m.	0.93	263	427	303
July 20.	6:00 p.m.	1.21	436	1,400	1,650
Sept. 8..	6:52 p.m.	. 91	234	410	259
oct. 13..	3:05 p.m.	. 98	268	538	389

Table 3.--Particle-size analyses of suspended sediment, ford section
/Method of analysis: Bottom-withdrawal tube in native water7

Date	Time	$\begin{array}{\|l} \text { water } \\ \text { dis- } \\ \text { charge } \\ \text { (cfs) } \end{array}$	Suspended sediment							
			Concentration of sample (pmm)	Concentration of suspension analyzed (ppm)	Percent finer than indicated size, in millimeters					
					0.016	0.031	0.062	0.125	0.250	0.500
1948										
June 12..	1:20 p.m.	263	427	1,640						
July 20..	6:00 p.m.	436	1,400	2,810	38	46	56	69	88	96
Sept. 8..	6:52 p.m.	234	410	842	12	16	27	50	87	98
oct. 13..	3:05 p.m.	268	538	2	4	10	26	94	100

Table 4.--Streamflow measurements, Niobrara River near Cody, Nebr., gaging-station section
/Bureau of Reclamation employees making measurements were J. Busalacchi, C. R. Miller, D. B. Raitt, R. Wertenberger, and G. J. Whitsel7

Date	Made by	Width (feet)	Cross-sectional area (sq ft)	Mean velocity (fps)	Gage height (feet)	Discharge (cfs)	Number of sections	Watersurface slope (ft per mile)
1947								
Dec. 14..	Zellars.	69	102	3.26	0.88	333	34	
Dec. 18..	. do.	74	95.4	3.17	. 90	302	37	
Dec. 27.. do.	74	104	3.38	1.11	351	37 ${ }^{\text {a }}$
$\underline{1948}$								
Jan. 5...	. . do.	74	106	3.43	1.13	364	37 ${ }^{\text {a }}$
Jan. 12..	. .do	74	106	3.14	1.05	333	37
Jan. 21..	. do.	74	101	3.37	1.04	340	37
Jan. 29..	. . . do.	73	79.2	3.01	. 84	238	37
Feb, 4.:. do.	73	92.6	2.90	. 90	269	37
Feb. $21 .$.do.	73	107	3.22	1.07	345	35
Mar. L... do.	74	105	3.23	1.05	339	35	
Mar. 13..	. . do.	73	92.2	3.32	. 95	306	41
 do.	76	120	4.21	1.31	506	38	
Mar. 16..	. .do.	81	210	5.62	2.43	1,180	27
Mar. 19..	. . do.	74	138	3.80	1.36	524	37
Mar. 29..	. . do.	74	125	3.78	1.35	473	37
July 20.. do.	72	118	3.62	1.24	428	36	
Aug. 25..	. do	69	86.5	2.58	. 88	223	38
Sept. 8.. do.	70	105	2.31	.96	243	38
Sept. 25. do.	70	107	3.06	1.09	327	45
0ct. 5...do	70	94.8	2.81	. 97	266	35
oct. 13..	Vice	69	89.8	2.90	. 98	260	28	
oct. 14..	Zellars	70.5	94.6	2.96	1.00	280	43	.
oct. 25..	. .do	71	96.2	3.12	1.07	300	37	
Nov. 3...	. do.	71	102	3.20	1.09	326	44	7.6
Nov. 17..	. . . do.	72	105	3.24	1.11	340	44	8.2
Nov. 30.. do.	71	102	3.29	1.08	332	36	7.7
Dec. 8...	. do	72	95.7	3.10	1.02	297	35	
Dec. 20..do.	71	100	2.94	. 97	294	35	
1949								
Mar. 3... do.	73	201	4.84	2.16	973	35	
Mar. 27..	. do	72	132	4.14	1.44	546	36	
Apr. 26..	. do	70	105	3.24	1.04	340	35	
May 16...	.do	72	119	3.86	1.26	460	36	
June 1...	. .do	70.5	118	3.07	1.07	363	36	

124 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

Table L.--Streamflow measurements, Niobrara River near Cody, Nebr., gaging-station section--Continued

Date	Made by	Width (feet)	Cross-$\mathrm{sec}-$ tional area (sq ft)	Mean velocity (fps)	Gage height (feet)	Discharge (cfs)	Number of sections	Watersurface slope (ft per mile)
1953--Con.								
Apr. 16..	zellars.	71	106	3.41	1.08	363	31	8.5
Apr. 22..	Hubbell.	71	107	3.36	1.09	360	22
May 3....	Ericson.	71	152	4.36	1.56	663	27	
May 19...do.	72	98.3	3.47	1.06	341	36
May 20...	Johnson, Busch.	70	110	3.36	1.16	370	28	
June 2...	Ericson.	60	80	3.30	. 91	264	30	
June 10..	Stevens, Alden.	69	122	2.69	1.02	328	25	
June 18..	Calver, Ericson	61	87.7	2.70	. 82	236	26
June 29..	Calver.	69	109	2.14	. 79	234	25
July 8...	Johnson, Kasparek.	69	117	2.41	.90	283	26
July 15..	Steele.	71	724	1.82	.76	225	37	
July 27..	Calver.	66	89.7	2.63	. 81	233	40
Aug. 4...	Hull, Busch	70	115	2.51	. 92	289	24 ${ }^{\text {a }}$
Aug. 12..	Steele.	68	98.7	2.35	. 78	232	36	7.0
Aug. 27..	Steele, Ericson.	70	108	2.18	.76	236	36	
Sept. 9..	Calver.	63	83.9	2.65	.78	221	23	
Sept. 10.	Hull, Kasparek.	69	98	2.33	.78	228	22	. . .
Sept. 22.	Steele.........	70	106	2.22	. 78	235	25

Table 5.--Sediment-discharge measurements, gaging-station section

Date	Time	Gage height (feet)	```Water discharge (cfs)```	Suspended sediment		Water temperature (${ }^{\circ} \mathrm{F}$)
				Mean concentration (ppm)	Discharge (tons per day)	
1947						
Dec. 17.	10:42 a.m.	.		842	
Dec. 18.	3:10 p.m.	0.90	248	794	532	
Dec. 27.	1:50 p.m.	2.11	355	951	912
1948						
Jan. 5...	2:45 p.m.	1.13	366	1,110	1,100
Jan. 21..	12:05 p.m.	1.05	334	737	665
Jan. 29...	12:30 p.m.	. 84	238	656	421
Feb. 4...	12:40 p.m.	. 90	268	773	559	
Feb. 21..	12:40 p.m.	1.06	350	1,180	1,120	-............
Mar. 4..	1:10 p.m.	1.02	329	946	840	
Mar. 13...	12:35 p.m.	1.07	371	1,330	1,330
Mar. 16.	3:50 p.m.	2.41	1,160	3,470	10,900	
Mar. 19..	12:55 p.m.	1.36	492	1,280	1,700
Mar. 29..	1:10 p.m.	1.35	486	1,070	1,400
Apr. 9...	1:50 p.m.	1.16	382	844	870	
Apr. 27.	1:00 p.m.	1.58	620	1, 460	2,440	.
May 7....	9:30 a.m.	1.16	382	894	922	. \cdot.
May 13....	10:10 a.m.	1.23	420	648	735
May 27....	2:00 p.m.	1.02	308	720	599
June 1..	1:45 p.m.	. 94	268	534	386
June 15..	12:20 p.m.	. 97	283	406	310
June 23..	-12:20 p.m.	1. 4.4	537	1,280	1,860	
June 30.	9:20 a.m.	1.15	376	721	732	
July 13...	12:00 m.	. 96	258	. 328	228	
July 20...	8:40 p.m.	1.24	452	1,370	1,670
Aug. 2..	10:30 a.m.	1,00	278	475	356	
Aug. 18..	9:50 a.m.	. 92	238	634	407	. $\cdot \cdot$....

Table 5.--Sediment-discharge measurements, gaging-stetion section--Continued

Date	Time	Gage height (feet)	```Water discharge (cfs)```	Suspended sediment		Water temperature (${ }^{\circ} \mathrm{F}$)
				Mean concentration (ppm)	Discharge (tons per day)	
1948--Con.						
Aug. 25.....	11:35 a.m.	0.88	219	394	233
Sept. 8......	6:15 p.m.	. 90	229	389	241
Sept. 25....	2:45 p.m.	1.06	308	518	431	
oct. 5.......	2:10 p.m.	. 97	263	366	260	
oct. 13.....	4:45 p.m.	. 96	258	483	336
0ct. 14......	4:15 p.m.	. 96	258	340	237
oct. 25......	1:00 p.m.	1.06	308	492	409
Nov. 3.......	3:20 p.m.	1.06	308	564	469	
Nov. 17......	2:20 p.m.	1.10	329	751	667	
Dec. 8.......	1:55 p.m.	1.00	288	864	672	
Dec. 20......	2:50 p.m.	. 96	278	643	483
1949						
Feb, 16.....	2:50 p.m.	i. ${ }^{\circ}$	320	423	365	
Feb. 25.....	10:30 a.m.	1.29	452	775	945
Mar. 3......	9:20 a.m.	2.13	972	2,990	7,850	
Mar. 8.......	4:00 p.m.	1.76	732	1,970	3,890
Mar. 27.......	3:25 p.m.	1.43	531	1,220	1,750	-
Apr. 26......	2:10 p.m.	1.00	319	634	546
May 16.......	1:40 p.m.	1.25	452	859	1,050	
June 1.......	12:15 p.m.	1.03	340	613	563
June 14......	$2.15 \mathrm{p.m}$.	1.11	366	584	577	
June 27......	1:20 p.m.	. 90	253	408	279
July 13......	3:55 p.m.	. 88	234	219	138
July 27......	3:20 p.m.	. 81	210	243	138
Aug. 9.......	12:05 p.m.	. 86	238	299	192	
Aug. 31......	3:40 p.m.	. 84	234	366	231	
Sept. 29....	3:30 p.m.	. 82	224	362	219	
oct. 6.......	2:20 p.m.	1.49	578	1,940	3,030	
oct. 22......	4:45 p.m.	. 98	298	482	388
Nov. 14......	12:00 m.	1.02	319	661	569
Nov. 29......	12:20 p.m.	1.03	324	682	597
$\operatorname{san} \frac{1950}{27 \ldots}$			291			
Feb. 10......	2:35 p.m. 3:55 p.m.	1.07	2914	351	354 301
Feb. $24 . . .$.	2:15 p.m.	1.21	436	1,350	1,590
Mar. 3.......	4:15 p.m.	1.13	392	1,060.	1,120	
Mar. 5.......	9:25 a.m.	1.16	408	1,550	1,710
Mar. 14......	3:30 p.m.	1.18	420	1,460	1,660	
Mar. 21......	12:50 p.m.	1.11	382	893	921
Mar. 30:.....	12:00 m.	1.18	420	1,050	1,190
Apr. 12......	12:55 p.m.	1.20	430	963	1,120	
Apr. 14.....	11:25 a.m.	1.14	398	813	874
May L.	12:20 p.m.	1.16	387	745	778	
May 11.......	11:40 a.m.	1.36	566	1,040	1,590
May 20.......	12:50 p.m.	1.34	555	528	791
June 7.	$10: 45 \mathrm{a} . \mathrm{m}$.	. 92	258	421	293	
June 13......	1:40 p.m.	. 85	224	366	221
July 9.......	3:25 p.m.	. 85	234	484	306	
July 20......	1:20 p.m.	.95	258	620	432
Aug. 2.......	9:25 a.m.	. 97	268	457	331	
Aug. 9.......	12:50 p.m.	. 94	253	1,030	704
Aug. 27......	10:45 a.m.	2.15	972	4,430	11,600
Aug. 30......	8:30 a.m.	1.09	376	956	971	
Sept. 5......	9:20 .a.m.	. 87	253	537	367
Sept. 18.....	1:15 p.m.	. 98	298	570	459	
Sept. 20....	12:10 p.m.	1.00	324	711	622	
Oct. 6......	9:10 a.m.	. 98	302	655	534	50
0ct. 31......	10:50 a.m.	1.02	319	498	429	48
Nov. 2.......	12:00 m.	1.00	310	683	572	43
Nov. 15......	1:25 p.m.	1.03	324	670	586	40
Dec. 7......	2:10 p.m.	1.07	203	302	166	33

Table 5.--Sediment-discharge measurements, gaging-station section--Continued

Date	Time	Gage height (feet)	Water discharge (cfs)	Suspended sediment		Water temperature (${ }^{\circ} \mathrm{F}$)
				$\begin{gathered} \text { Yean } \\ \text { concentration } \\ (\mathrm{ppm}) \end{gathered}$	Discharge (tons per day)	
1951						
Jan. 1.......	2:30 p.m.	0.99	306	836	691	33
Jan. 23......	4:00 p.m.	. 97	319	942	811	34
Jan. 25......	10:20 a.m.	. 90	310	880	737	37
Feb. 14......	3:00 p.m.	1.00	300	430	348	34
Mar. 7......	1:00 p.m.	1.06	385	1,870	1,940	32
Mar. 15......	9:40 a.m.	1.15	430	1,220	1,420	35
Mar. 21......	11:00 a.m.	. 90	310	1,020	854	39
Apr. L.......	1:10 p.m.	. 98	346	730	682	48
Apr. 17......	12:55 p.m.	. 96	337	516	470	51
Apr. 27......	11:45 a.m.	1.17	440	874	1,040	58
May 1........	11:20 a.m.	1.07	380	721	740	55
May 10.......	10:15 a.m.	. 93	314	558	473	52
May 23.......	1:45 p.m.	1.10	395	594	634	69
May 2L.......	10:20 a.m.	1.13	410	782	866
June 7......	1:50 p.m.	. 99	342	922	851	70
June 15......	10:40 a.m.	. 94	319	516	444	70
June 30......	3:00 p.m.	. 86	286	461	356	66
July 18......	11:00 a.m.	. 97	298	470	378	78
July 23......	11:30 a.m.	. 89	266	406	292	70
July 29......	5:42 a.m.	4.50	2,700	3,710	27,000
	8:12 a.m.	5.77	3,760	5,520	56,000	73
	2:40 p.m.	3.93	2,240	5,980	36, 200	-
Aug. 2......	6:40 p.m.	1.12	324	742	649	74
Sept. 6......	12:00 m.	1.83	760	2,860	5,870	66
Sept. 8......	10:50 a.m.	1.31	460	594	738	-••••••
Sept. 24.....	1:40 p.m.	1.02	319	456	393	51
oct. 7.......	2:50 p.m.	. 98	302	488	398	56
oct. 24......	11:00 a.m.	1.06	324	572	500	46
Nov. 5.......	3:55 p.m.	1.17	360	948	921	36
Nov. 15......	8:50 a.m.	1.09	324	955	835	35
Dec. 3......	1:20 p.m.	1.12	337	830	755
1952						
Jan. 9.......	2:00 p.m.	. 99	298	294	237	32
Jan. 10......	1:45 p.m.	1.01	314	387	328	33
Jan. 29......	3:50 p.m.	. 98	332	432	387	33
Feb. 8.......	1:30 p.m.	1.08	380	912	936	34
Feb. 12.....	9:20 a.m.	1.13	405	1,180	1,290	35
Mar. 9.......	3:00 p.m.	1.09	385	802	834	. \cdot.
Mar. 11......	12:50 p.m.	1.15	415	1,010	1,130	40
Mar. 30......	2:15 p.m.	2.03	935	3,340	8,430	47
Apr. 1.......	11:40 a.m.	1.60	662	2,030	3,630
Apr. 6.......	4:30 p.m.	1.20	440	951	1,130
Apr. 10......	12:20 p.m.	1.18	430	1,080	1,250	45
May 8........	10:45 a.m.	1.19	435	862	1,010	
May 16.......	3:00 p.m.	1.11	395	734	783	62
May 24.......	1:20 p.m.	1.23	455	890	1,090	70
June 5......	12:05 p.m.	1.04	306	514	1225	76
June 15......	1:45 p.m.	.78	230	354	220	83
June 19......	11:35 a.m.	. 78	230	458	284	69
Juiy L.......	10:10 a.m.	. 90	278	462	347	73
July 20......	11:10 a.m.	. 75	219	246	145	76
Juiy 31.....	1:45 p.m.	.73	212	204	117	83
Aug. 16.....	10:05 a.m.	. 84	254	394	270	72
Aug. 20.....	10:30 a.m.	. 78	223	354	213	73
Aug. 29......	11:00 a.m.	.74	208	245	138	73
Sept. 9......	3:05 p.m.	. 72	219	260	154	75
Sept. 12....	9:30 a.m.	. 73	223	282	170

Table 5.--Sediment-discharge measurements, gaging-station section--Continued

Date	Time	$\begin{aligned} & \text { Gage } \\ & \text { height } \\ & \text { (feet) } \end{aligned}$	Water discharge (cfs)	Suspended sediment		Water temperature (${ }^{\circ} \mathrm{F}$)
				Mean concentration (ppm)	Discharge (tons per day)	
1952--Con.						
Sept. 26.....	11:10 a.m.	0.81	234	346	219	61
act. 11......	9:55 a.m.	. 94	294	446	354	52
act. 12......	11:15 a.m.	. 90	278	514	386	
oct. 23......	12:35 p.m.	. 92	286	482	372	52
oct. 28......	2:20 p.m.	.93	266	515	370	
Nov. 13......	12:15 p.m.	. 96	310	563	471	
Dec. 6.......	3:50 p.m.	. 98	319	791	681	
Dec. 11......	2:00 p.m.	1.00	328	866	767
1953						
Jan. 9.......	1:00 p.m.	. 90	294	1,020	810	
Jan. 22......	1:40 p.m.	1.14	405	902	986	
Feb. 3.......	1:15 p.m.	1.13	400	1,080	1,170	
Feb. 27......	1:50 p.m.	1.37	490	1,580	2,090	
Mar. 11.......	9:20 a.m.	1.36	538	1,290	1,870	42
Mar. 27......	12:40 p.m.	1.05	350	934	883
Mar. 30......	2:50 p.m.	. 99	324	728	637	
Apr. 16......	2:35 p.m.	1.07	350	1,010	982
Apr. $22 . \ldots .$.	10:10 a.m.	1.08	365	605	596	
July 8.......	5:30 p.m.	. 90	278	471	354

Date	Time	$\begin{gathered} \text { Water } \\ \text { discharge } \\ \text { (cfs) } \end{gathered}$	Sam- pling station	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Suspended sediment													Methods of analysis
					Sampling point			Percent finer than indicated size, in millimeters										
					$\begin{gathered} \text { Velocity } \\ \text { (fps) } \end{gathered}$	$\begin{aligned} & \text { Depth } \\ & \text { (feet) } \end{aligned}$	$\underset{\text { (ppm) }}{\text { Concentration }}$	0.002	0.004	0.008	0.016	0.031	0.062	0.125	0.250	0.500	1.000	
$\frac{1949}{\text { Mar. }} .$																		
	6:35 p.m.	732	95	1.9	5.83	1.0	2,450	$\ldots .$.	4	8	17	36	76	96	\ldots	BN
	6:20 p.m.	732	95	1.9	4.17	1.4	4,860	2	3	8	21	70	96	\cdots	BN
	6:10 p.m.	732	115	2.6	6.09	. 5	1,750	\ldots	3	6	14	43	93	99	BN
	5:55 p.m.	732	115	2.6	5.73	1.5	2,750	5	$?$	14	34	78	97	\ldots	BN
	5:45 p.m.	732	115	2.6	3.77	2.1	4,200	3	6	11	24	69	98	BN
	5:30 p.m.	732	135	3.6	5.21	. 5	920	\ldots	\ldots	10	21	43	72	100	...	\cdots	BN
	5:15 p.m.	732	135	3.6	4.80	1.5	1,190	\ldots	10	15	32	67	96	99	BN
	5:10 p.m.	732	135	3.6	3.05	2.5	1,540		5	9	23	64	97	100	...	BN
	5:00 p.m.						1,900	2	6	10	38.	91	99	\ldots	BN
Apr. 8....	4:50 p.m.	398	95	1.5	3.38	. 2	380	\cdots	\ldots				32	70	87	98	\ldots	BN
	4:45 p.m.	398	95	1.5	3.96	. 6	570	,	\ldots	8	24	60	92	99	\ldots	BN
	4:40 p.m.	398	95	1.5	3.74	. 8	690	.	….	6	22	56	93	100	\ldots	BN
	4:35 p.m.	398	95	1.5	3.56	1.0	970	5	18	40	90	100	BN
	4:15 p.m.	403	109	1.7	5.25	. 2	570	\ldots	\ldots	\ldots	.	29	62	95	99	\ldots	BN
	4:10 p.m.	403	109	1.7	5.19	. 6	1,140	\cdots	14	44	94	99	\ldots	BN
	4:00 p.m.	403	109	1.7	4.83 4.38	1.0	2,100				\cdots	9	28 27	86 83	98 98	...	BN
	4:00 p.m.	403	109	1.7	4.38	1.2	2,640	\ldots	\cdots	2	7	27	83	98	BN
	3:40 p.m.	403	119	2.0	4.72		720					10	22	54	83	97		BN
	3:35 p.m.	403	119	2.0	5.03	. 8	980	\ldots	1	1	16	44	86	98	...	BN
	3:30 p.m.	403	119	2.0	4.97	1.3	1,520			\cdots	12	36	86	98	...	BN
	3:20 p.m.	403	119	2.0	4.40	1.5	2,280	2	3	8	28	83	98	BN
	3:00 p.m.	403	129	2.1	3.95	. 2	530	-	12	14	32	65	97	99	.	BN
	2:55 p.m.	403	129	2.1	4.74	. 8	710	\ldots	.	.	9	13	28	58	85	97	...	${ }^{\text {BN }}$
	2:45 p.m.	403	129	2.1	4.53	1.2	770	10	13	25	53	91	98	BN
	2:40 p.m.	403	129	2.1	4.14	1.6	1,170	3	6	16	40	81	98	BN

130 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

$\vdots \vdots \vdots$	$\vdots \vdots \vdots$	$\vdots \vdots$	$\vdots \vdots$	$\vdots \vdots$	$\vdots \vdots \vdots$	$\vdots \vdots$	$\vdots \vdots$	！：	！\vdots
パロ	¢ロパロ	8， $0^{\circ}{ }^{\circ}$	8，	®\％\％	ソ品ず	25\％	888.	8889］	8889\％
あべか	べめめが	Мั\％¢	இ\％8	むのペ	요웅	－	ふす	¢5べ	
웄ํ		\％ion	๑¢゙R	ファ＠	－¢®aid			ダง¢	กิึีํ
®－	กัenin		¢n¢	がニ0	¢ ${ }_{-1}$	$\stackrel{\sim}{\sim}{ }^{\text {No }}$	กヘ	～～～국	ลニ゙ニ
$\vec{\square}$	$\vdots \vdots \vdots$	！－	N ${ }^{\text {a }}$	！：	！：	水	：	$\vdots \vdots$	\vdots
$\vdots \vdots$	：	！	$\vdots \vdots$	：	\vdots	：：			：
		：：	：	：：	$\vdots \vdots$	：：：	！		$\vdots \vdots \vdots$
$\vdots!~!~$		！\vdots		$\vdots \vdots$! !	$\vdots \vdots$		$\vdots \vdots \vdots$
$\vdots \vdots$	$\vdots \vdots$! :		：：	: :	！\vdots			$\vdots \vdots$

	BRemb

!oo	～oun	909	ๆッ－	$\xrightarrow[\sim]{-\sim}$	？		!	ษ90	nom
in 0 ल்ल்		$8 \cong \cong$ लัツ	Mno jug		¢оำ．	～ロホ	¢\％ jim		Pung junj
～ベN	๙ヘ๙๙	－		oun	Nัก	ヘัツツ	$\begin{aligned} & \sim 1 \\ & \therefore-i, ~ \end{aligned}$	～デゥ	$\infty \infty$ －iri
$\underset{\sim}{\sim}$	ninmin નึブッ	亿uño	nợinion	$\underset{\sim}{\sim}$	$\underset{\sim}{\text { Nincin }}$	\min $\underset{\sim}{\mathcal{A}}$	ふた		억억

132 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

Date	Time	$\begin{gathered} \text { Water } \\ \text { discharge } \\ \text { (cfs) } \end{gathered}$	Sam- pling station	Total depth (feet)	Suspended sediment													Methods of analysis
					Sampling point			Percent finer than indicated size, in millimeters										
					(fps)	(feet)	$\begin{array}{r} \text { Concentrat } \\ \text { (ppm) } \end{array}$	0.002	0.004	0.008	0.016	0.031	0.062	0.125	0.250	0.500	1.000	
$\frac{1950-- \text { Con. }}{\text { Mar. } 3 \ldots \ldots}$																		
	4:10 p.m.	392	129	2.2	4.19	0.5	710	\ldots	\ldots		34	73	98	100	s
	4:05 p.m.	392	129	2.2	4.52	1.0	860	\cdots	32	68	98	100	s
	4:00 p.m.	398	129	2.2	4.36	1.4	1,010	27	62	97	100	\cdots	S
	3:50 p.m.	398	129	2.2	3.82	1.7	1,240	\cdots	23	54	95	100	s
	3:45 p.m.	398	147	2.4	2.98	. 5	600	42	80	99	100	..	s
	3:35 p.m.	398	147	2.4	3.10	. 9	670	\ldots	\cdots	38	77	99	100	\cdots	S
	3:30 p.m.	348	1417	2.4	2.84	1.4	830	33	73 59	99	1.00	S
	3:25 p.m.	398	14	2.4	2.54	1.9	1,040	\cdots	25	59	99	100	S
July 10...	2:27 p.m.	234	10	2.0	2.22	. 5	130	\ldots	\ldots	\therefore.	61	88	99	100		s
	2:17 p.m.	234	10	2.0	2.12	1.0	180	\ldots	\ldots	\ldots	\ldots	48	78	98	100	S
	2:07 p.m.	238	10	2.0	1.26	1.5	200	41	72	98	100	...	s
	2:43 p.m.	234	30	1.8	2.31	. 3	250	\ldots	35	62	92	100	S
	2:36 p.m.	234	30	1.8	2.14	. 8	400	.	.	\cdots	\ldots.	36	55	89	100	\cdots	s
	2:32 p.m.	234	30	1.8	1.90	1.3	460		,	20	34	75	100	\ldots	s
	2:54 p.m.	234	45	1.4	2.56	. 4	270	34	65	99	100	\ldots	S
	2:48 p.m.	234	45	1.4	2.47	. 9	420	\ldots	.	\ldots	\ldots	\ldots	20	46	93	100	\ldots.	s
	3:06 p.m.	234	60	1.6	2.40	. 5	230	\ldots	33	55	89	100	S
	3:01 p.m.	234	60	1.6	2.68	1.1	310	\ldots		27	62	97	100	,	S
oct. 6....	11:24 a.m.	302	10	1.5	1.82	. 5	270	\ldots	43	82	100		\ldots	SWM
	11:14 a.m.	302	10	1.5	1.56	1.0	300.	\cdots	\ldots	38	75	99	100	Stw
	11:42 a.m.	298	20	2.1	3.19	. 5	340	\ldots	40	75	97	100	Suer
	11:26 a.m.	302	20	2.1	2.46	1.6	820	\ldots	17	45	94	100	\ldots	SLW
	11:53 a.m.	298	26	1.8	3.47	. 5	400				35	69	98	100		StM
	11:46 a.m.	298	26	1.8	2.86	1.3	780				19	47	95	100	.	Swh
	12:02 p.m.	298	34	1.9	3.42		340						40	76	98	100		Swem
	11:59 a.m.	298	34	1.9	2.90	1.4	1,040						15	41	88	100		Sm4

Fi= ¢0\%	
Эヲ	

134 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

Table 6．－－Particle－size analyses of suspended sediment，point－integrated samples，gaging－station section－－Continued

		$\vdots \vdots \vdots \vdots \vdots \vdots \vdots$
	！：	
	！\quad ：$\vdots \quad \vdots \vdots \quad \vdots \vdots \vdots$ ！	
	：：	
	$\vdots \vdots \vdots \quad \vdots \vdots \vdots \quad \vdots \vdots \quad \vdots \vdots \vdots 亠 \vdots \vdots$	
$\begin{array}{\|l\|} \hline \stackrel{8}{0} \\ 0 \\ \hline \end{array}$	！：	
｜cc｜c		
（en		ブッ
		ลำ
	デテキ べニテ	
咢		
菏	號：	（\％

！\vdots	$\vdots \vdots$	！：	：	：	！\vdots	！：	！！：	！：	：	$\vdots \vdots$
		8， 8 8，			8， 8 ¢ 8	8， 8 号8	88878	8，	8， 8 团	8， 8 ¢
ぶふず	ลัลัล	ลัロース	がった	ロッゴ	かへず	ลタロロ	ロムのか	がぁの	べづぁ	8Nㅜㄴ
めったが	ą8）	ลั大ํ		ロ̊กำ	ㄴํำ	ำち	กัำำ	89	セัฐ゚	우욱
ถน้ำ	票ㄷ\％	¢ ${ }_{\text {m }}$	צ゚\％	Nom ${ }^{\circ}$	กสฟนึ	¢\％¢N	～NO	か®	ロベกน	$\mathrm{Nam}^{\mathrm{man}}$
い	ํํㄴำ	$\vdots \vdots$	$\vdots \vdots$	$\vdots \vdots \vdots$	\vdots	$\vdots \vdots$	\vdots			
卌	いろ⿺尢丶	$\vdots \vdots$	：	$\vdots \vdots \vdots$	！：	$\vdots \vdots$	：	：		
$\stackrel{\infty}{\infty}$ ！	〒97	！	\vdots	$\vdots \vdots$		！！	！！			
～	9\％－M	$\vdots \vdots$	$\vdots \vdots$	$\vdots \vdots$	！：	$\vdots \vdots$	\vdots	：		
๓	¢0	！：	！	；	：	$\vdots \vdots$	！：			

\bigcirc	－－ic	$\stackrel{\sim}{\sim}$	$\xrightarrow{\sim} \mathrm{M}$－	$\xrightarrow{\text { n－}}$	n－3i	－＋i	$\xrightarrow{\sim}$	？${ }_{\text {¢ }}^{\text {a }}$	－	\because
	Noñ	ஃon유 $\dot{\text { мim }}$	ஜo ¢ ทํํㅋㅋ̇		$\underset{\sim}{\substack{\text { ¢ }} \substack{\text { Non }}}$	$\begin{aligned} & \text { و.äた } \\ & \text { MiN } \end{aligned}$	$\underset{\sim}{\infty} \underset{\sim}{\infty}$ $\dot{\exists} \dot{m} \dot{m}$	式気べさ		ヘัก
	∞									
	$\overrightarrow{\dot{m}} \overrightarrow{\mathrm{~m}} \overrightarrow{\mathrm{n}} \overrightarrow{\mathrm{~m}}$		へิべへべ	ッッ～ ～～～	$\underset{\sim}{N} \underset{\sim}{N}$	ヘัN～～		ヘヘNへ		へio
Nิત્入入	욱윽육	웅슈	ल̈ले	①	กัณณ์	ถนึ6	～ัก	ำ	N～Nm	～～～～～～

	気侌気	気页気気	式式氛気	ぶ粫	页高	式式式甬	気気気
	$\vdots \vdots$	$\vdots \vdots \vdots$	！	！：	888	$\vdots \vdots \vdots$	$\vdots \vdots \vdots$
－	8 ¢ 8	\％	8， 8 8， 8	888	ற2\％の		8， 8 ¢ 8 ¢
	2゙aき	28070웅	゚ずずか	м8ス	885	べコの号	ロロ゙べロ
	두늬	¢－¢	오운ำ7	$8 \stackrel{1}{5}$	® NへN	ถัตกัก	¢ミペ
	へべい		ํํํํํㅜㄱ	กิะ	キヲ゚	¢్ల్ల్ల®N	M9ํ．
	$\vdots \vdots$	$\vdots \vdots \vdots \vdots$	$\vdots \vdots \vdots$	$\vdots \vdots$	$\vdots \vdots$		$\vdots \vdots \vdots$
	$\vdots \vdots$	$\vdots \vdots \vdots$	$\vdots \vdots$	！！	$\vdots \vdots \vdots$	$\vdots \vdots$	$\vdots \vdots \vdots$
	！\vdots	$\vdots \vdots \vdots \vdots$	$\vdots \vdots \vdots$	$\vdots: ~ \vdots$	\vdots		
	$\vdots \vdots \vdots$	$\vdots \vdots \vdots \vdots$	$\vdots \vdots \vdots \vdots$	$\vdots \vdots \vdots$	\vdots		
（0）	$\vdots \vdots \vdots$	：：：	$\vdots \vdots \vdots$	！：	：：		
	nलperin		제구궁	习习习习号	$\begin{aligned} & 9800 \\ & \text { 군 } \\ & \text {-in } \end{aligned}$	녹ํ웅	－riom：
	$\mathrm{m}_{0}^{2 n}$	$\rightarrow \uparrow \uparrow \infty$		-	$\rightarrow \uparrow$	$\rightarrow \infty$	
		5気がき miNiN	Э38 9 м்ற்ற்ற	$\begin{aligned} & 8 \underset{\sim}{8} 8 \\ & \dot{m} \dot{n} \end{aligned}$			ヘัヘヘ
	－i¢융			Mツini	$\vec{i} \vec{i} \vec{i}$	べべへ	으ำ우
	ㅇํ우ํ운	テコココゴ	べざべ	लै m 年	9990	กั゚ั̃̃	ヘヘッત入
	ヘัN			M M	ल్లֵల్ల్ల	్ల్ల్ల్ల్ల్ల్ల	우우N우N
婁						追白白 え்்் ททํํำก 	シ́シ்̇ らえらぁ 구ㅇㅜㅠ윾 ジッジ
	高交						$\begin{aligned} & \dot{\vdots} \dot{\infty} \\ & \infty \\ & \infty \\ & \text { 合 } \end{aligned}$

Table 7.--Particle-size analyses of suspended sediment, depth-integrated samples, gaging-station section

	$\vdots \vdots \vdots \vdots \vdots \vdots$		$\vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \stackrel{\vdots}{\vdots}$	！\vdots
				O－188\％
	～スデ\％			
		miñorm		닀의
				〒สコ
${ }^{\text {nnen }}$（ $\vdots \vdots$			8으n min	
			すすత	
			꾼ํN 유N	
－：우률	: ㄱㅋㄱ운웅웅	웅		

辰安家号号		旡家		家安垵家	室婁等		宫芸总

Table 7.--particle-size anaiyses of suspended sediment, depth-integrated samples, gaging-station section--Continued

可氛気気気				
		\vdots		
O్రి్సర్లిర్లి	\％ัasouno		O－M，	
Кへのゅ\％			兹びずコロ	2ずらび
				8तす\％
	～～ヘะ			へ๐ั๙
		－		$\underset{\sim}{\circ}$
				ন్లిల్లn¢

142 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE
Table 8.--Particle-size analyses of stream-bed material, gaging-station section

Mrethod of analysis, sieve. Samples analyzed individually. Mar. 30, 1952,
and July 8, 1953, were taken at 4 sampling points; Jan. 9, 1952, at 2 points; all others, at 3 points]

Table 8.--Particle-size analyses of stream-bed material, gaging-station section--Continued

Date	Bed material							Location (station numbers)
	Percent finer than indicated size, in millimeters							
	0.062	0.125	0.250	0.500	1.000	2.000	4.000	
1952--Con.								
Aug. 16...	0	2	40	83	92	95	99	12, 33, 56
Aug. 29...	1	2	27	77	90	96	99	24, 47, 63
Sept. 12..	0	1	33	91	98	99	100	15, 32, 54
Sept. 26.	0	1	36	91	99	100	21, 46, 62
oct. 11...	\cdots	1	25	86	96	98	99	28, 43, 58
oct. 23...	0	2	42	91	97	99	100	17, 36, 55
1953								
Mar. 11...	0	3	44	97	99	100	...	32, 45, 57
Apr. 22...	0	4	48	90	97	99	100	$24,42,62$
July 8....	0	4	47	92	97	98	99	12, 33, 48, 59

Table 9.--Sediment-discharge measurements, contracted section
-Ratio is that of concentration at cross section to concentration at daily sampling station/

Date	Time	Gage height (feet)	Water discharge (cfs)	Suspended sediment			water temperature (${ }^{\circ} \mathrm{F}$)
				Ratio	```Mean concen- tration (ppm)```	$\begin{aligned} & \text { Discharge } \\ & \text { (tons } \\ & \text { per day) } \end{aligned}$	
1948							
July $20 .$.	5:00 p.m.	1.24	452	1,800	2,200	
Sept. 8...	11:00 a.m.	. 94	248		776	519	
oct. 13...	4:00 p.m.	. 97	263		1,180	838	
Nov. 3....	2:20 p.m.	1.08	319	1,610	1,390
1949							
Feb. 25...	9:00 a.m.	1.30	458	954	1,180	
Mar. 8....	2:15 p.m.	1.74	720	3,240	6,300	
Apr. 8....	10:30 a.m.	1.21	420	-••••	2,030	2,300	
May 5.....	11:40 a.m.	1.15	398	1,700	1,830	
June 6....	10:30 a.m.	1.02	334	1,520	1,370
July 13...	11:00 a.m.	. 94	263	. . . ${ }^{\text {a }}$	970	689	
Aug. 25...	12:00 m.	. 83	224	1,140	689
Sept. 16..	12:00 m.	. 93	268	1,020	738
oct. 15...	12:20 p.m.	1.06	340		1,630	1,500	
Nov. 8....	9:55 a.m.	1.00	308	1,400	1,160	
1950							
Mar. 3...	11:25 a.m.	1.08	366		1,890	1,870	
Mar. 5....	1:15 p.m.	1.16	408	1.12	2,140	2,360
Apr: 14...	1:00 p.m.	1.12	387	1.11	1,770	1,850
	9:10 a.m.	1.13	395	1.21	2,000	2,130	
	4:30 p.m.	1.08	366	1.11	1,970	1,950	

144 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

Table 9.--Sediment-discharge measurements, contracted section--Continued /Ratio is that of concentration at cross section to concentration at daily sampling station7

Date	Time	Gage height (feet)	Water discharge (cfs)	Suspended sediment			Water temperature (${ }^{\circ} \mathrm{F}$)
				Ratio	```Mean concen- tration (ppm)```	Discharge (tons per day)	
1950--Con.							
May 11...	8:40 a.m.	1.40	590	0.99	1,780	2,840
	1:20 p.m.	1.33	549	1.09	2,660	3,940	
June 7....	8:15 a.m.	. 96	278	1.18	780	585	
	11:05 a.m.	. 91	253	1.07	890	608	
June 13...	10:30 a.m.	. 87	234	1.18	790	499	
July 9.	1:35 p.m.	. 86	238	1.34	910	585	
	6:15 p.m.	. 85	234	1.29	670	423	
Aug. 2....	10:15 a.m.	. 94	253	1.37	1,000	683	
Aug. 30...	9:40 a.m.	1.07	366	1.20	1,780	1,760	
Sept. 20..	12:55 p.m.	. 99	319	1.07	1,490	1,280	
oct. 6..	9:40 a.m.	. 97	298	. 93	1,020	823	
Nov. 2....	12:45 p.m.	1.00	310	1.29	1,480	1,240	43
$\frac{1951}{25}$							
Jan. 25.	10:40 a.m.	. 89	306 385	1.16	1,340	1,110	34
Mar. 15...	10:20 a.m.	1.17	440	1.22	1,780	2,120	35
Mar. 21..	12:06 p.m.	. 94	328		1,540	1,370	
Apr. 27...	8:40 a.m.	1.20	455	1.10	1,900	2,340	
May 10....	10:50 a.m.	. 92	310	1.13	1,580	1,330	52
May 24....	8:35 a.m.	1.17	430	1.10	2,060	2,390	68
June 15...	9:40 a.m.	. 99	342	1.10	1,340	1,240	68
July 18...	9:40 a.m.	1.00	310	1.25	1,200	1,010	75
July 29...	7:50 a.m.	5.62	3,630	. 83	4,160	40,800	
Aug. 2...	6:20 p.m.	1.16	342	1.34	1,840	1,700	74
Oct. 24...	11:40 a.m.	1.05	3.19	1.19	1,590	1,370	46
Nov. 15...	9:20 a.m.	1.09	324	1.07	1,710	1,500	35
1952							
Jan. 9...	11:00 a.m.	1.05	324	1.14	642	562	32
Jan. 29...	1:00 p.m.	1.02	350	1.34	893	844	37
Feb. 12...	10:20 a.m.	1.13	105	1.14	1,820	1,990	37
Mar. 11.	11:40 a.m.	1.15	415	1.09	2,210	2,480	38
Apr. 10...	2:00 p.m.	1.16	420	1.18	2,120	2,400	45
May 8.....	5:15 p.m.	1.12	400	1.20	1,700	1,840	59
May č4....	12:30 p.m.	1.24	460	1.21	2,750	3,420	70
June 5....	3:05 p.m.	. 93	262	1.13	1,200	849	76
June 19...	11:00 a.m.	. 79	234	1.48	754	476	68
July L....	11:50 a.m.	. 86	262	. 76	934	661	78
July 20...	8:40 a.m.	. 76	223	1.23	503	303	70
July 31...	3:40 p.m.	. 73	212	1.43	392	224	84
Aug. 16...	7:45 a.m.	. 86	262	1.35	820	580	69
Aug. 29...	11:05 a.m.	. 74	208	1.11	429	241	73
Sept. 12..	8:30 a.m.	. 73	223	1.36	454	273	62
Sept. 26..	12:00 m.	. 81	234	1.06	736	465	61
0ct. 11...	10:35 a.m.	. 93	290	1,220	955	52
oct. 23...	10:20 a.m.	. 92	286		1,500	1,160	47
Dec. 11...	11:30 a.m.	1.00	328	1,520	1,350	36

Taoıe 9.--Sediment-discharge measurements, contracted section--Continued Ratio is that of concentration at cross section to concentration at daily sampling stationㄱ

Date	Time	Gage height (feet)	$\begin{aligned} & \text { Water } \\ & \text { discharge } \\ & \text { (cfs) } \end{aligned}$	Suspended sediment			Water tempera ture (${ }^{\circ} \mathrm{F}$)
				Ratio	Mean concentration (ppm)	Discharge (tons per day)	
1953							
Jan. 9....	1:55 p.m.	0.91	298		1,660	1,340	
Feb. 3....	9:40 a.m.	1.14	405		2,220	2,430	
Mar. 11...	8:05 a.m.	1.35	532		2,060	2,960	42
Apr. 22...	8:45 a.m.	1.09	370		1,400	1,400	54
May 3.....	11:25 a.m.	1.57	668	\ldots	2,340	4,220	47
May 20....	9:35 a.m.	1.13	355	1,560	1,500	63
June 2....	11:20 a.m.	. 90	258	1,000	697	68
June 10...	3:15 p.m.	. 95	298	954	768	82
June 29...	3:30 p.m.	. 78	230	490	304	86
July 8....	3:20 p.m.	. 90	278	792	594	68
July 27...	3:15 p.m.	. 78	230	480	298	84
Aug. 4....	3:40 p.m.	. 91	282	. . .	1,080	822	79
Aug. 27...	10:10 a.m.	.75	234	507	320	
Sept. 10..	4:05 p.m.	.77	226	\cdots	659	402	77
Sept. 22..	1:00 p.m.	. 77	226	666	406	64

Table 10.--Temperature (${ }^{\circ} \mathrm{F}$) of water, Niobrara River near Cody, October 1948 to September 1953
/Once-daily. temperature measurement at approximately 8 a.m. until May 1, 1953. Water temperature measurement during the afternoon indicated by letter a/

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1949 water year												
1	55	43	a 35	\cdots	33	34	35	48	68	72	68	54
2	49	42	34	a 32	35	39	49	62	69	65	61
3	51	42	33	a 32	35	43	58	60	72	67	64
4	53	45	32	a 32	38	4	61	62	71	69	61
5	55	35	a 32	33	35	43	55	60	73	70	59
6	50	34	.	a 33	33	40	47	52	66	68	69	61
7	40	38	a 34	a 32	40	47	52	57	68	68	60
8	38	31	a 33	a 32	a 32	4	49	54	56	75	67	58
9	45	31		32	a 32	40	49	53	53	68	77	59
10	45	a 37	a 34	a 34	36	45	55	62	68	68	63
11	40	31	a 34	...	a 34	41	41	60	62	67	70	59
12	4	34	34	32	a 33	37	48	62	69	68	69	53
13	4	34	32	a 34	a 34	36	50	63	61	75	69	47
14	42	35	a 34	33	33	41	71	59	66	70	53
15	49	37	33	33	34	40		64	66	68	55
16	40	39	...	33	33	a 37	41	a 61	64	68	67	58
17	35	39	a 32	33	37	4	60	69	68	68	54
18	47	35	-	33	33	36	43	62	62	66	67	52
19	39	32	…	a 33	32	39	53	57	68	67	69	50
20	47	32	a 34	a 32	a 32	42	56	59	69	68	65	55
21	40	31	32	a 33	33	42	57	57	66	63	65	53
22	42	32	33	32	33	39	52	58	68	65	68	55
23	42	36	31	33	33	44	47	55	69	69	68	51
24	42	34	a 32	34	42	52		63	71	67	55
25	49	37	a 32	a 32	34	36	55	60	65	71	68	52

146 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

Table 10. --Temperature (${ }^{\circ} \mathrm{F}$) of water, Niobrara River near Cody, October 1948 to September 1953--Continued
/Once-daily temperature measurement at approximately 8 a.m. until May 1, 1953. Water temperature measurement during the afternoon indicated by letter a7

Table 10.--Temperature (${ }^{\circ} \mathrm{F}$) of water, Niobrara River near Cody, October 1948 to September 1953-mContinued
/Once-daily temperature measurement at approximately 8 a.m. until May 1, 1953. Water temperature measurement during the afternoon indicated by letter a7

148 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

Table 10.--Temperature (${ }^{\circ} \mathrm{F}$) of water, Niobrara River near Cody, October 1948 to September 1953--Continued
/Once-daily temperature measurement at approximately 8 a.m. until May 1, 1953. Water temperature measurement during the afternoon indicated by letter a7

Day	ct	Nov.	Dec	Ja	Feb		Apr.		y		,			Aug			pt.
1953 water year--Continued																	
								Max.	Min.								
8	38	38	a 36	a 38	a 41	34	43	64	54	77	57	72	65	80	64	74	66
9	40	36	a 37	a 38	a 33	39	40	66	54	72	65	73	64	86	69	75	66
10	45	32	a 36	a 35	a 32	39	34	57	50	81	63	80	64	78	67	77	68
11	45	36	a 36	a 38	a 33	41	38	59	46	88	72	84	69	73	64	73	66
12	48	37	a 37	a 39	a 35	40	37	48	42	81	69	82	70	80	62	71	64
3	48	40	a 33	a 39	a 37	41	38	52	4	89	73	85	68	85	05	72	4
14	46	250	a 34	a 33	a 37	39	4.	63	4	86	74	83	69	76	68	73	64
15	39	a 47	a 38	a 33	a 36	33	33	65	51	78	69	82	68	70	63	72	64
16	43	a 42	a 36	a 33	a 33	37	34	58	53	79	62	77	68	69	64	72	64
17	43	a 39	a 34	a 33	a 39	42	35	61	54	84	65	82	66	73	64	72	66
8	42	a 42	a 34	a 32	a 37	39	35	68	54	85	69	84	70	76	63	70	62
19	43	a 33	a 34	34		38	33	71	56	82	64	85	70	75	63	71	64
20	43	a 39	a 37	a 35		44	37	67	61	77	62	86	69	76	65	68	62
21	42	a 38	a 34	a 34	a 33	43	38	65	55	79	63	82	69	75	64	66	57
22	43	a 37	a 32	a 32	a 33	40	49	69	53	74	63	84	67	76	65	69	59
23	42	a 34	a 32	a 36	a 37	38	51	64	58	84	66	82	68	71	67	70	64
24	45	a 33	a 32	a 38	a 32	33	50	73	57	76	66	83	70	79	64	68	63
25	47	a 32	a 32	a 39	a 36	32	37	74	59	77	60	86	71	81	67	66	58
26	44	a 32	a 32	a 40	a 35	40	38	71	59	74	61	85	71	82	69	66	60
27	45	a 32	a 32	a 39	a 37	40	45	75	61	80	66	85	71	81	70	67	60
28	35	a 35	a 36	a 37	a 32	38	46	74	64	78	65	81	73	78	72	68	62
29	35	a 37	a 34	a 42		45	45	78	65	87	69	75	70	79	70	67	62
30	40	a 35	a 36	a 35		45	40	72	58	86	72	80	65	78	70	66	59
31	54		a 34	a 39		45	...	77	59	86	72	81	72		

Date	Time	$\begin{aligned} & \text { Water } \\ & \text { discharge } \\ & \text { (cfs) } \end{aligned}$	Sampiing station	Total depth (feet)	Suspended sediment												$\begin{aligned} & \text { Methods } \\ & \text { of } \\ & \text { analysis } \end{aligned}$
					Sampling point			Percent finer than indicated size, in millimeters									
					(fps)	(feet)	(ppm)	0.008	0.016	0.031	0.062	0.125	0.250	0.500	1.000	2.000	
$\operatorname{mar} . \frac{1948}{16} .$																	
	11:55 a.m.	1,330 1,330	13	11.0	3.0 5.0	5,890 5,210	10 7	13	14	28 27	37	80 59	97 81	\cdots	$\begin{aligned} & \mathrm{BN} \\ & \mathrm{BN} \end{aligned}$
	12:05 p.m.	1,300	13	11.0	8.0	5,080	9	12	17	28	40	77	97	BN
	4:14 p.m.	1,160	13	11.0		1.0	4,340	8	11	14	22	33	74	95	BN
	3:55 p.m.	1,160	13	11.0		4.0	4,520	9	12	15	20	26	53	79	BN
	4:08 p.m.	1,160	13	11.0	8.0	5,040	8	12	16	22	29	55	91	\cdots	BN
June 12...	10:40 a.m.	283	10	9.5	1.4	781	2	3	8	22	89	99	-	
	10:30 a.m.	283	10	9.5	3.9	757	4	6	12	26	90	98			BN
	10:20 a.m.	283	10	9.5		6.8	1,010	4	4	8	19	96	100		BN
	9:45 a.m.	288	10	9.5		9.1	1,120	. \cdot.	3	4	7	16	70	91	BN
Sept. 8...	2:20 p.m.	224	6	7.6	2.9	1.0	513	.	5	6	13	28	79	94	\ldots		BN
	2:10 p.m.	229	6	7.6	2.5	3.0	739	\ldots	4	6	11	22	72	88	BN
	1:45 p.m.	229	6	7.6	2.2	5.0	924	3	4	8	18	44	76	BN
	1:10 p.m.	229	6	7.6	1.6	7.1	920		5	9	18	43	80	BN
	5:15 p.m.	224	10	9.0	4.1	2.0	485	.	5	7	15	31	64	89	:....	BN
	4:59 p.m.	224	10	9.0	3.7	4.0	556	.	6	9	14	32	88	98	BN
	4:52 p.m.	224	10	9.0	3.2	6.0	709	2	5	10	25	82	95	-	BN
	4:36 p.m.	224	10	9.0	1.8	8.6	1,240	3	3	7	16	50	81	BN
	3:4 4 p.m.	224	14	8.6	3.3	2.0		.			10	24	71	86	BN
	3:20 p.m.	224	14	8.6	2.9	4.0	871	3	4	10	21	56	86	\ldots	BN
	3:12 p.m.	224	14	8.6	3.0	6.0	${ }^{9} 931$	\ldots	2	3	8	37	60	85	BN
	2:52 p.m.	224	14	8.6	1.2	8.2	1,430	2	2	4	13	41	74	BN
oct. 13...	10:30 a.m.	283	6	8.8	3.6	2.0	1,220					78	98	-	BN
	10:30 a.m.	283	6	8.8	1.8	5.0	2,000	.	2	3	4	10	60	95	BN
	10:30 a.m.	283	6	8.8	2.0	7.0	3,810	3	1	2	6	32	80	BN
	3:00 p.m.	-283	6	8.8	. 6	8.3	4,370			2	2	4	24	67		BN

150 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE
Table ll．－－Particle－size anaiyses of suspended sediment，point－integrated samples，contracted section－－Çontinued

	㕯台㞥㕯		各各䀆呙	各各各盛	㿻各㕯台		
8 8 N		$\vdots \vdots:$	$\vdots \vdots:$	$\vdots \vdots:$	$\vdots \vdots \vdots$	$\vdots: ~!~$	$\vdots: ~!~$
	$\vdots \vdots: ~$	$\vdots: ~!~$	$\vdots: ~ \vdots$	$\because: ~ \vdots$	$\vdots \vdots \vdots$	$\vdots \vdots:$	$\vdots \vdots:$
	〇スmの	がロベス	がフ～8	すがが边	Nの发が		すご心の
$$	さNへへへ	かき윤		8 ソ9ํ․	ㄴำ以쿠	908극	8乌ヨ心
	のデ析		융ㅇN			NNNN	
	abum	∞－0，	$\sim \mathrm{N} \times \sim$	$\mathrm{O}^{\infty} \times \sim$	bininin	かのन～	극パ
	nman	inmmN	OmNr	N－2n	$\exists \mathrm{mmN}$	ココパ	oons
$\begin{array}{\|c\|c\|c\|} \hline 0.0 & \stackrel{\rightharpoonup}{0} & 0 \\ 0 & 0 \\ \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ & 0 & 0 \end{array}$	inmor	monr	am	oun ！：	ヘ	！nmı	$m \rightarrow m$
			$\vdots \vdots:$	$\vdots \vdots:$		！：！	
	$\begin{aligned} & 8 \text { 880 } \\ & \text { oñ } \\ & \text { rinm } \end{aligned}$	$\begin{aligned} & \text { 응옹 } \\ & \text { ूㄷ․ } \end{aligned}$	$\begin{aligned} & \text { 오옥ㅇN } \\ & \text { ON } \\ & \text { innm } \end{aligned}$	$\begin{aligned} & \text { Rg오 } \\ & 0 . g n \\ & \text { Hinn } \end{aligned}$	$\begin{aligned} & 0800 \\ & -7800 \\ & \text { Hinco } \end{aligned}$		$\begin{aligned} & \text { BOO } \\ & \text { HN } \\ & \text { minn } \end{aligned}$
	$\begin{array}{ccc} 0 & 0 \\ \text { Nun } \\ \text { Nin } \end{array}$	$\begin{gathered} 000 \\ \text { No } \end{gathered}$	ornon ぶが	0001 ヘルパが	oininin ～ํ．	$\begin{gathered} 0 \\ \text { NiNo } \end{gathered}$	$\begin{gathered} 0000 \\ \text { Nino } \\ \hline 1 \end{gathered}$
	テテテáa	ri! - -	$\begin{gathered} 000 \\ \text { åáa } \end{gathered}$	がo ペのペー	0000	$\infty \infty \infty^{\circ} \infty^{\circ}$	욱웅
	억억윽	示きゴゴゴ	○いい。	억육윽	品きコゴ心	6000	욱육
	$\operatorname{nin}_{\infty}^{\infty} \min _{\infty}$	min $\min _{\sim}^{\infty} \underset{\sim}{\infty}$	äले			육NNN	
$\stackrel{\otimes}{E}$							
¢	$\begin{array}{r} \vdots \\ \dot{C} \\ \dot{O} \\ 0 \\ 0 \\ 0 \end{array}$						

$\vdots \vdots \vdots$	！：	！：	$\vdots \vdots \vdots$	$\vdots \vdots \vdots$	$\vdots \vdots \vdots$		：：	：
：：			：：			：：		：：：
：		：：：	．	：：：	！：：：	$\vdots: ~:$		：：：：
Nomain	ふため\％	スロッロ゚	ロুぶ		ダィ\％゚ロ	หั้ั		
	ตั\％－in	央央ミツ	いがo	네めㅒN	หำ只近	－	Nへ8＝	
ำ入入	ヘnล̃ヘ	윳NNㅜㅇ	लेल	min	－1న్లM	戸べへ		
かनma	のaのー	デ～へo	ハ－7			～न゙年	\sim	
～ก10	mmma	6 mOH	$\pm \infty 0$	$\infty \times \infty$	Oroun	$\cdots \infty$		
\rightarrow MーN	～HHN	$\sim \sim$	Non		かいココ	－		．
：：：	：：	$\vdots \vdots \vdots$	，	：	：			！：

온우웅	0000 rijo		000		$\begin{aligned} & 0000 \\ & i=1 \approx i \infty \end{aligned}$	－ 0	－	－ 0 －
	고우웅 	ลักำ～ 	$8: 70$ Bin		ㅊำกำ 			웅옹 ทก゚่ง่
แกำกㄴ $\omega^{\circ} \boldsymbol{\infty}^{\circ} \boldsymbol{\omega}^{\circ}$	nunung べべべ	응ํ웅	ทㄴำก ペ～	ทㄴํnำ べべ	ทnuninun $\infty \infty^{\circ} \infty^{\circ} \infty^{\circ}$	ninin $0^{\circ} 0^{\circ} 0^{\circ}$	$\dot{\infty}_{\infty}^{\infty} \infty_{0}^{\circ} \infty_{\infty}^{\prime}$	$\dot{\sigma} \dot{\circ} \dot{\sigma}$
ゴゴゴ	0000	우우욱	デゴコ	0000	욱우우욱	ゴゴコ	－00\％．	웅웅

8 8으앙	으국응	و으NN	－	응ํํ	끄ำ ${ }^{\text {² }}$	윽ํํํ．	8 8으웅	와ㅇㅛㅡㄱ
	ÖÖÖÖ		∞ ®0̈が	ヘ̈ö̈ÖÖ		少当光	ÖÖÖÖ	苔
	：			：			：	
	∞			\vdots			0	
	$\dot{\square}$			\％			\％	
	¢			\％			5	

152 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

			品台合吕	吕台台台	各台云备		含盛䫆面	
	8 	$\vdots \vdots \vdots$	$\vdots \vdots \vdots$	$\vdots \vdots \vdots$	$\vdots \vdots \vdots$	$\vdots \vdots!$	$\vdots \vdots \vdots$	$\vdots: \vdots$
		$\vdots \vdots$	！$\vdots \vdots$	！$\vdots \vdots$	！：$\vdots \vdots$	！$\vdots \vdots \vdots$	！！！	$\vdots \vdots \vdots$
		ニัロロス	ล2月めか	スペべか	めスのが	2のへスa	ス®®ロロ	냉ㅇㅇㅇ
	$\begin{array}{c\|c} 0 & 8 \\ \stackrel{n}{c} \\ \stackrel{0}{0} & 0 \\ \hline \end{array}$	¢0ึ6누	あめざす。	かめが第		～ロ80\％	$\infty \times \infty$	moyinm
		－${ }_{\text {－}}^{\text {® }}$ N			べきヨ习		Nomen	N®ำn
$\begin{aligned} & \text { O} \\ & \text { W } \\ & \text { 5 } \end{aligned}$		$\sim_{n}^{\text {nnco }}$	\rightarrow－	Maํㅜ	min \vdots	ニコゴ⿰亻弋	－	
$\begin{gathered} 8 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline 0 \end{gathered}$		$\vdots \vdots$	！m	ma \vdots	$\rightarrow-$－	の－1＊	～	$\underset{\sim}{\sim}+\infty$
		！！！	：：：	！	！\vdots	$\vdots \vdots$	\vdots	！！
		$\vdots \vdots \vdots$	！：	$\vdots \vdots$	$\vdots \vdots \vdots$	$\vdots \vdots$	：：	！
			8웅ํㅇN			$\begin{gathered} \text { Ropor } \\ \text { Nincon } \\ \text { nin } \end{gathered}$	80ㅜㅠㄲㅇㅇㅇㅇ	Bros
0 0		－	－ 0	뭉ㅇㅇㅇ	웈oin		－i，${ }^{\circ}$	$\begin{gathered} 0.000 \\ \text {-ijo } \end{gathered}$
			0 N․ 7 ベーi	べmヨコ $\dot{j} \boldsymbol{j} \dot{m}$	$\begin{aligned} & 8 \text { mos o } \\ & \text { - Min in } \end{aligned}$	ㅈㅇㅇ구웅 ต்ゥウヘ	$\begin{aligned} & \underset{\sim}{N} \underset{\sim}{\sim} \underset{\sim}{a} \\ & \text { jamio } \end{aligned}$	
		ル ᄂninun $\infty^{\circ} \infty^{\circ} \infty^{\circ}{ }^{\circ}$	$\operatorname{Ln} \ln \ln 2 n$ $\infty^{\circ} \infty^{\circ} \infty^{\circ} \infty^{\circ}$	$\infty \infty \infty \infty$ がのペの	우우웅	nininin べがべ	innunin $\infty \infty \infty^{\circ} \infty^{\circ}$	べべべ
		ぎコゴ	0000	우우욱	ゴココゴ寺	－000	우우ㅇㅜㅐ	デゴコゴゴ
			¢					ลNNNN
	朢							
	$\stackrel{\text { ¢ }}{\text { ロ }}$					$\begin{array}{r} \dot{0} \\ 0 \\ +1 \\ \stackrel{\rightharpoonup}{\circ} \\ \dot{0} \end{array}$		

욱웃응	옹ㅇㅇㄴ	을욕ㄴ	엉앤운앙	8양ㅇNN	운웅응	울잉융거	$8 \text { 89ㅇㅇㅇㅇㅁㅁ }$	
べべべ	－－－	－゙「べ	べージデ	\cdots	べデデべ	ベべง		－i゙nベヘ

000	$\begin{aligned} & 0.000 \\ & \cdots-100 \end{aligned}$	000	$\begin{array}{r} 0000 \\ \text { No } \end{array}$	0000	$\begin{aligned} & 0000 \\ & \text { Nós } \end{aligned}$	$\begin{aligned} & 0000 \\ & \text { No } \end{aligned}$	$\begin{aligned} & 0000 \\ & \text { ájó } \end{aligned}$	웅․․
 ต்ธ்	Hio ทㄴำシ	$\begin{aligned} & \text { @. } \\ & \text { mi Ni } \end{aligned}$	タNずす。 miलi～		국ำ うற்ஸ்	べずすきす ற்ヘัற்ற	－เi่งกํ	
nunin －0．0．	$\infty^{\circ} \infty^{\circ} \dot{\circ}^{\circ}$	nninin $0^{\circ} 0^{\circ}$	$\ln \ln \ln 2 n$ べべへ	$\infty^{\circ} \infty^{\circ} \infty^{\circ} \infty^{\circ}$	2nin2nin ごべ	 べべへ	ninunin $\infty^{\circ} \infty^{\circ} \infty^{\circ}{ }^{\circ}$	$\infty_{\infty}^{\circ} 0_{\infty}^{\circ} 0_{0}^{\circ}$
－00	웅우윽	きコゴ心	－000	웅어으으	ココココ	－ヘNー	－Fन゙	$\ln _{\substack{\text { nn }}}$

$\begin{aligned} & \dot{E} \dot{E} \dot{E} \\ & \dot{Q} \dot{\mathrm{~B}} \end{aligned}$	自自宝 	$\underset{\sim}{E} \underset{\sim}{\dot{j}} \underset{\sim}{\dot{j}} \underset{\sim}{\dot{E}} \underset{\sim}{E}$	宝宝宝 ส่ ส่ ส่	官安宝 ๙สสส	安安官 สัส ส			
		$\begin{aligned} & \text { Finn } \\ & \ddot{\theta} \text { ÖO } \end{aligned}$			no 능격 がす̈̈の̈	8		
$\begin{aligned} & \vdots \\ & \text { i } \\ & \stackrel{3}{0} \end{aligned}$			\vdots ∞ 0 0 0			范		

154 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

Date	Time	Water discharge (cfs)	Sampling station	Total depth (feet)	Suspended sediment												$\begin{aligned} & \text { Methods } \\ & \text { of } \\ & \text { analysis } \end{aligned}$
					Sampling point			Percent finer than indicated size, in millimeters									
					$\begin{gathered} \text { Velocity } \\ \text { (fps) } \end{gathered}$	$\begin{aligned} & \text { Depth } \\ & \text { (feet) } \end{aligned}$	Concentration (ppm)	0.008	0.016	0.031	0.062	0.125	0.250	0.500	1.000	2.000	
$\frac{1950-- \text { Con. }}{\text { July } 10 \ldots}$																	
	4:20 p.m.	234	8	8.9	3.33	2.0	340	25	46	85	100	S
	4:15 p.m.	234	8	8.9	1.40	6.0	650	…...	.	16	30	73	100	……	\ldots	S
	4:10 p.m.	234	8	8.9	1.42	8.4	1,620	.	.	.	8	17	55	95	100	...	S
	4:42 p.m.	234	11	9.0	3.48	2.0	360	\cdots	\ldots	28	49	85	100	S
	4:37 p.m.	234	11	9.0	3.55	6.0	380	26	41	79	100	\ldots	\ldots	S
	4:30 p.m.		11	9.0		8.5	1,080	9	21	68	98	100	S
	6:12 p.m.	234	14	9.4	3.48	1.0	430	21	41	83	100	S
	5:50 p.m.	234	14	9.4	1.12	6.0	2,220	6	12	58	88	100	...	S
	$5: 28 \mathrm{p.m}$.	234	14	9.4	1.64	8.9	1,880	.	. \cdot	.	6	14	50	94	100	S
$\frac{1951}{\text { Jan }} 2 .$	2:45 p.m.	332	7	8.0	2.78	. 5	1,320	12	32	76	98	100	SWM
	2:51 p.m.	332	7	8.0	3.51	2.5	1,410	\ldots	\ldots	12	31	76	99	\ldots	SWM
	3:00 p.m.	332	7	8.0	2.11	5.0	1,940	10	26	67	97	SWM
	3:10 p.m.	332	7	8.0	2.62	7.5	3,430	8	22	63	97	-•...	SWM
	3:44 p.m.	337	11	9.8	3.08	. 5	1,570	14	34	77	99	SWM
	3:42 p.m.	337	11	9.8	4.09	3.0	1,330	13	32	75	99	\ldots	SWM
	3:36 p.m.	332	11	9.8	3.68	6.5	1,990	.	.	\cdots	9	24	67	98	\cdots	...	Sul
	3:28 p.m.	332	11	9.8	1.64	9.3	5,750	4	11	46	96	100	SWI
	4:21 p.m.	337	14	7.1	3.08	. 5	1,530	12	29	72	98	\ldots	SWM
	4:18 p.m.	337	14	7.1	4.38	2.5	1,740	,	10	26	67	96	SWM
	4:04 p.m.	337	14	7.1	1.46	4.5	3,330	7	17	53	90	97	. \cdot....	SWM
	3:52 p.m.	337	14	7.1	3.48	6.6	3,320	\ldots	8	24	54	95	,	SWM
Apr. 27...				. \cdot.	7.31	. 5	1,360	15	46	89	SWM
	9:46 a.m.	450	8	\ldots	6.29	2.5	1,720	\ldots	13	36	83	\cdots	\cdots	SWM
	9:50 a.m.	450	8	5.79	5.0	1,990	-	10	32	77	98	\cdots	SWM
	11:17 a.m.	445	11	9.6									100	
	11:14 a.m.	445	11	9.6	7.19	6.0	1,750	11	33	75	99	.	.	SWW
	11:02 a.m.	445	11	9.6	2.69	9.1	2,310	...		,	8	25	66	98		Stw

呟苜							

156 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

Date	Time	$\begin{array}{\|c} \text { Water } \\ \text { discharge } \\ \text { (cfs) } \end{array}$	Sampling station	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Suspended sediment												Methods analysis
					Sampling point			Percent finer than indicated size, in millimeters									
					Velocity (fps)	$\begin{aligned} & \text { Depth } \\ & \text { (feet) } \end{aligned}$	Concentration (ppn)	0.008	0.016	0.031	0.062	0.125	0.250	0.500	1.000	2.000	
$\frac{1952-\text { Con. }}{\text { June } 5 \ldots .}$																	
	10:54 a.m.	319	11	10	-3.78	0.5	1,060	\ldots	\ldots		18	34	68	94	99	100	SW
	12:06 p.m.	306	11	10	4.02	3.0	1,110		17	34	73	100		SW
	11:55 a.m.	306 319	11	10 10	3.98 1.41	6.0 9.5	1,520 2,560	..	\ldots	\ldots	$\begin{array}{r}14 \\ 8 \\ \hline\end{array}$	$\begin{array}{r}27 \\ 17 \\ \hline\end{array}$	67 54	99 98	100 100	\ldots	${ }_{\text {SW }}^{\text {SW }}$
	10:56 a.m.						2,560	\ldots			54	98	100	\ldots	SW
	1:06 p.m.	286	14	10.5	3.48	. 5	929	.	\ldots	\ldots	20	39	81	100		\ldots	SW
	1:00 p.m.m.	286	14	10.5	4.02	3.5	1,460	..		\ldots	13	27	66	97	100		SW
	$\left\lvert\, \begin{aligned} & 12: 54 \mathrm{p} . \mathrm{m} . \\ & 12: 35 \mathrm{p} . \mathrm{m} . \end{aligned}\right.$	294 298	14 14	10.5 10.5	2.75 .72	7.0 10.0	2,280 4,000	…	\ldots	8	12	56 46	96 93	99 98	100 100	${ }_{\text {SW }}^{\text {SW }}$
June 19...	4:00 p.m.	223	8	7.9	3.48	. 5	326		23	48	88	100			
	3:55 p.m.	223	8	7.9	3.92	3.0	448	...	\ldots		17	38	81	99	100	\ldots	SW
	3:51 p.m.	223	8	7.9	1.80	5.5	662		16	30	72	98	100	SW
	3:27 p.m.	219	8	7.9	. 74	7.4	1,620	….	12	20	52	96	100	\ldots	SW
	4:15 p.m.	223	11	8.0	3.78	. 5	256	\ldots	27	54	91	100	\ldots	\cdots	Sw
	$4: 20$ p.m.	223	11	8.0	4.20	3.0	342	\ldots				100	SW
	L:12 p.m.	223	11	8.0	4.08	5.5	+561		16	35	80 58	100			${ }_{\text {SW }}$
	4:05 p.m.	219	11	8.0	2.41	7.5	1,520		6	16	58	96	99	100	SW
	4:42 p.m.	226	14	8.3	3.88	. 5	303		28	46	82	98	100	\ldots	SW
	L:39 p.m.	226	14		4.20	3.3	614		13						SW
	4:36 p.m.	223 223	14	8.3 8.3	2.57 1.99	6.0 7.4	1,270 8,370				7 1	16 5	53 48	98 98	100 100		${ }_{\text {SW }}^{\text {SW }}$
	4:30 p.m.	223	14	8.3	1.99	7.4	8,370				1	5	4.8	98	100		SW
July 33...	5:08 p.m.	208	8	8.0	2.76	. 5	180	\ldots	\ldots	26	51	90	100	\ldots	\ldots	SW
	5:00 p.m.	208	8	8.0	3.45	3.0	291				20		86	100		\ldots	SW
	4:51 p.m.	208	8	8.0	1.07	5.5	544		12	28	72	98	99	100	${ }_{\text {SW }}$
	4:18 p.m.	208	8	8.0	1.29	7.5	1,190				6	16	56	96	100	SW
	$5: 48 \mathrm{p} . \mathrm{m}$.	208	11	8.3	3.13		124	\ldots		37	100			\ldots		SW
	5:40 p.m.	208 208	111	8.3 8.3 8	3.87 3.18	3.5 5.9	307 415			15 12	34 33	72	$1 \begin{aligned} & 100 \\ & 100\end{aligned}$	\ldots	\ldots	${ }_{\text {SW }}^{\text {SW }}$
	5:28 p . m .	208	11	8.3	2.40	7.8	774				6	20	64	9	1000		SW

$\vdots \vdots$		！：\％¢	：	！：		\ ：\o	！：：
！：\％o्न		8， 8 ¢0，	8， 8 －1－\％	\o్丨ర⿰亻⿴囗⿱一一廾彡			
\O్－®\％\％		のัロัス	のัのロス	8－1スのう		8クூ゙ロず	\％\％の日\％
8－1શ゚ロ		ロ89		ヘロッロ\％	m¢⿺夂力	ヘミNの	Conin
กัลัก				すべむの	¢¢n¢	กัําก	moñ
N～궁		N－7no		Q	$\overbrace{}^{\infty} \mathrm{LON}$		$\underset{\sim}{\sim} \mathrm{O}_{\mathrm{Cl}}^{\mathrm{m}}$
$\vdots \vdots \vdots$							$\vdots \vdots$
$\vdots!~: ~ ¢ ~$	：：：：$\quad:!$						！

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline セn⿺辶入－ \& ก．¢inco \& \& \& \(\xrightarrow{\text { noino }}\) \& n¢0웅 \& ㄴ．0웅 \& nin mion \& nopoo \\
\hline \begin{tabular}{l}
が \\
ぶறベか
\end{tabular} \& \& す무Nㅜㅇ ммm \& \[
\begin{aligned}
\& \text { Min } \\
\& \text { nim } \\
\& \text { nin }
\end{aligned}
\] \& \& miñ～ \& Noㅇํㅇ․ \& \[
\stackrel{\circ}{\infty} \underset{\sim}{\text { ning }}
\] \& \\
\hline \& \& － \& \& 응ํ웅 \& \& \& 응ํ웅 \& \\
\hline コココゴ \& \(\infty \infty \infty\) \& ヲヲヲコ \& デコデ \& \(\infty \infty \infty\) \& ヲヲヨテ \& デコニコ \& \(\infty \times \infty\) \& 习习习゙ \\
\hline \& \& ¢ \& \& ลื 고쿠 \& స్లే \& \& \& \\
\hline \& \& \& ธ่ ธั ธ่ ส่ แํㅡㅊㅇㅇ 우무우우 \& \& \& \& \& \begin{tabular}{l}
 \\
きがゴロ \\
ぶべのに
\end{tabular} \\
\hline \& \& \& \& － \& \& \& \(\vdots\)

¢
¢ \&

\hline
\end{tabular}

Table 11.--Particle-size anaiyses of suspended sediment, point-integrated samples, contracted section--Continued

Date	Time	Water discharge (cfs)	Sampling station	Total depth (feet)	Suspended sediment												Methods of analysis
					Sampling point			Percent finer than indicated size, in millimeters									
					Velocity (fps)	$\begin{aligned} & \text { Depth } \\ & \text { (feet) } \\ & \hline \end{aligned}$	Concentration (ppm)	0.008	0.016	0.031	0.062	0.125	0.250	0.500	1.000	2.000	
$\frac{1952-- \text { Con. }}{\text { Oct. } 23 \ldots}$																	
	9:44 a.m.	286	14	10.1	3.62	0.5	1,010			24	74	99	100		SW
	9:39 a.m.	286	14	10.1	4.02	3.5	1,690	6	18	62	96	99	100	SW
	9:34 a.m.	286	14	10.1	1.20	6.5	2,760			9	11	47	93	98	100	SW
	9:30 a.m.	286	14	10.1	1.66	9.6	8,360	\ldots	\ldots	\ldots	2	5	29	82	94	99	SW

Table 12.--Particle-size analyses of stream-bed material, contracted section

Methods of analysis: B , bottom-withdrawal tube; N , in native water; W , in distilled water; S , sieve; C , chemically dispersed; P , pipette;

Date	Time	$\begin{gathered} \text { Water } \\ \text { discharge } \\ \text { (cfs) } \end{gathered}$	Suspended sediment											Methods of analysis
			$\begin{aligned} & \text { Concentration } \\ & \text { of sample } \\ & (\mathrm{ppm}) \end{aligned}$	Concentration of suspension analyzed (ppm)	Percent finer than indicated size, in millimeters									
					0.004	0.016	0.031	0.062	0.125	0.250	0.500	1.000	2.000	
1948														
July 20....	5:00 p.m.	452	1,800	3,280	22	26	34	47	80	94	98	BN
Sept. 8....	11:00 a.m.	253	776	1,340	4	6	12	23	65	94	99	BN
oct. 13....	3:47 p.m.	263	1,180	1,250	2	3	6	14	69	97	BN
Nov. 3.....	2:26 p.m.	319	1,610	1,950	4	4	7	14	49	87		BN
1949														
Mar. 8....	2:15 p.m.	720	3,240	3,020	4	7	13	27	53	85			BN
Apr. $8 . .$.	10:58 a.m.	420	2,030	2,590	2	3	10	25	87	99			BN
May 5......	11:42 a.m.	398	1,700	2,290		6	7	13	31	79	97			BN
June 6.....	10:33 a.m.	334	1,520	2,020		5	9	19	57	93			BN
July $13 . .$.	11:07 a.m.	258	970	1,180				7	15	58	93	99	BN
Sept. 16...	12:20 p.m.	268	1,020	1,030	12	14	20	61	88	97	BW
oct. 1.....	6:10 a.m.	298	1,000	470		16	23	74	99	BW
0ct. 10....	11:45 a.m.	458	1,500			23	50	87	99	100	.	SWC
oct. 15....	12:15 p.m.	345	1,630	1,540				12	19	58	100		BW
oct. 22....	1:50 p.m.	308	1,400			11	20	71	97	100	SWC
Nov. 1.....	3:15 p.m.	298	1,210	,	12	30	69	95	99	100	SWC
Nov. 8.....	10:00 a.m.	308	1,400	1,460	12	20	66	100	BW
Nov. 20....	10:00 a.m.	308	2,110	1,			8	22	61	84	89	100	SWC
Dec. 9.....	4:20 p.m.	273	1,700	-..............	9	24	65	90	100	SWC
Dec. 31....	9:20 a.m.	240	960			12	21	60	96	100	SWC
1950														
Mar. $1 . . .$.	11:35 a.m.	387	2,640				12	28	72	97	100		SWC
Mar. 3.....	11:25 a.m.	366	1,890		13	33	78	96	97	100	SWC
Apr. 14....	9:10 a.m.	395	2,000			7	20	62	96	100	SW
May ll.....	$8: 40 \mathrm{a} . \mathrm{m}$. $1: 20 \mathrm{p} . \mathrm{m}$	590 54.9	1,780 2,660					20 9	42 24	76 68	95 97	100 100	SW

	気気氛高名 			镸镸	㖇気
	$\vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots$ ！	\％	！$\vdots \begin{gathered}\text { ！} \\ \vdots \\ \vdots\end{gathered}$	8，	
		2\％8\％188		スタロ	88
	タั\％\％゚－	タัごよの		ั๐	®®
			ヶO్ర：\％\％	กセ\％	K？
	ำูำ－			ㄷN	ma
				Э0	ヘีコ
		: :			
	\vdots \vdots Mrinf \vdots \vdots \vdots	交 $\vdots \vdots \vdots$	！	～	
		：	$\vdots \infty{ }_{\text {¢ }}$	む	
	욱우웅 mí				
	 			$\begin{aligned} & \text { 员品 } \\ & \text { fin } \end{aligned}$	$\begin{aligned} & \text { 운아N } \\ & \text { No } \end{aligned}$
		윽	 m～～～	N～్ले	욱
采	 				
哭				京	家京

162 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

Table 15.--Profiles of normal section C-2

June 14, 1951		July 18, 1951		Aug. 3, 1951		Sept. 6, 1951		Apr. 1, 1952		May 8, 1952		June 19, 1952		Sept. 26, 1952	
Station	Altitude														
$0+80$	85.4	$1+\infty$	84.9	$0+62$	84.8	$0+68$	85.4	$0+78$	84.30	$0+89$	83.92	$0+80$	84.87	$0+80$	85.41
$0+85$	85.4	$1+05$	84.8	$0+67$	85.0	$0+72$	85.4	$0+82$	84.10	$0+93$	84.02	$0+86$	84.67	$0+85$	85.16
$0+90$	85.2	$1+10$	85.3	$0+75$	85.6	$0+76$	85.5	$0+86$	84.00	$0+97$	83.82	$0+92$	84.67	$0+90$	85.16
$0+95$	85.2	$1+16$	85.5	$0+85$	85.7	$0+80$	85.6	$0+90$	83.90	$1+01$	83.52	$0+98$	84.67	$0+95$	85.21
$1+00$	85.2	$1+22$	85.4	$1+00$	85.7	$0+84$	85.6	$0+94$	83.90	$1+05$	84.32	$1+01$	84.77	$0+98$	84.41
$1+05$	85.2	$1+28$	85.4	$1+10$	85.6	$0+88$	85.6	$0+98$	83.80	$1+09$	84.12	$1+10$	84.37	$1+00$	84.21
$1+10$	85.3	$1+32$	84.9	$1+20$	85.5	$0+92$	85.6	$1+02$	83.70	$1+13$	84.02	$1+15$	84.67	$1+02$	83.76
$1+25$	85.3	$1+33$	86.3	$1+25$	85.2	$0+96$	85.6	$1+06$	83.70	$1+17$	83.92	$1+20$	84.77	i +04	83.61
$1+20$	85.3			$1+29$	85.3	$1+00$	85.6	$1+10$	83.60	$1+21$	84.22	$1+22$	85.67	$1+06$	83.41
$1+25$	85.2			$1+32$	86.1	$1+05$	85:6	$1+14$	83.60	$1+25$	84.42			$1+08$	83.21
$1+30$	84.9			$1+32$	87.1	$1+10$	85.6	$1+18$	83.50	$1+28$	84.72			$1+10$	83.31
$1+32$	84.6			$1+47$	89.1	$1+15$	85.6	$1+22$	83.80	$1+30$	85.72			$1+12$	83.61
$1+32$	86.1				$1+20$	86.7	$1+26$	84.30				$1+14$	83.71
$1+33$	85.9					$1+25$	85.7	$1+30$	84.70					$1+16$	83.81
$1+40$	87.1					$1+30$	85.5	$1+32$	85.00					$1+18$	83.71
$1+45$	88.7					$1+32$	86.9							$1+20$	83.91
$1+65$	91.6													$1+22$	84.26
													$1+24$	84.21
														$1+26$	84.36
. ${ }^{\text {a }}$										$1+28$	84.36
														$1+30$	84.96
....... ${ }^{\text {a }}$	$1+32$	85.41

Table 16．－－Profiles of normal section C－3

	ammMr	\rightarrow ？ 			ற்ற்ற் $\infty \infty \infty \infty \infty$	ヘレレーの м்ற்ற்ற் $\infty \infty \infty \infty \infty$
	Nong 극 NMm子雪 + + + + + 100000	$\begin{aligned} & \text { 은ㄴㅇㅇ } \\ & +++++ \\ & 00000 \end{aligned}$			느N읙 $\begin{gathered} +++++ \\ -H-1-1-1 \end{gathered}$	$\begin{aligned} & \text { 은 } 8 \text { 约 } 8 \\ & +++++ \\ & +-1+r+1 \end{aligned}$
	$\begin{array}{ll} \sim \infty \\ \dot{\sim} \dot{\infty} \dot{\infty} \dot{\infty} & \dot{\infty} \dot{\infty} \\ \hline \end{array}$	ㄷNN			ルペルーゴ ற்ற்ற்ற் $\infty \infty \infty \infty$	লrirncis
	$\left\lvert\, \begin{aligned} & \text { mo go } \\ & ++4+4 \\ & 00000 \end{aligned}\right.$	$\begin{aligned} & \text { H. } 08 \mathrm{Cl} \\ & +++++ \\ & 00000 \end{aligned}$				$+++++$ $-4-1-1-1$
	rric	M゚ー～～ 			๓umッ！ ற்ハ்～ $\infty \infty \infty \infty$	$\stackrel{\sim}{\dot{\infty} \dot{\infty} \dot{\infty} \dot{\sim} \dot{\sim} \dot{\prime}}$
		$\begin{aligned} & 8 \ln 8 \mathrm{n} \\ & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & 8 \ln \Omega 8 \\ & +++++ \\ & 0000 \end{aligned}$	능에N ＋＋＋＋＋ $\stackrel{-1}{-1-1}-1$		
	－N～～～ Nivivi		$\begin{array}{ll} 0 \\ \dot{7} \dot{\vec{j}} \dot{\rightarrow} \times \infty \\ \infty \\ \infty \end{array}$			$0 \rightarrow 90 ?$
	$\left\lvert\, \begin{aligned} & \text { Nompon } \\ & +++++ \\ & 00000 \end{aligned}\right.$	ㄲํㄴํํํํ $+++++$ 00000	$\begin{aligned} & \text { 응ㅇㅇㅇ } \\ & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { mono no } \\ & \text { on + + + } \\ & 0-1-1-1 \end{aligned}$		ํํํํํํํํํ $\begin{aligned} & +++++ \\ & -H-1+-1+1 \end{aligned}$
				$\dot{\infty} \underset{\infty}{\infty} \underset{\infty}{\infty} \dot{\infty} \dot{\infty}$		－9ウール ப்ற்ற்ற்
	Mーブール + ＋＋＋＋ 00000	$\begin{aligned} & 8 \text { 능ㅇㅇㅇ } \\ & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { nging } \\ & \infty++++ \\ & 000+1 \end{aligned}$		no ingin ตココーディ ＋＋＋＋＋ $\rightarrow r \rightarrow r \rightarrow+r$	
	$\begin{aligned} & -\infty 0 \\ & \hdashline \infty \\ & \infty \infty \\ & \infty \\ & \infty \end{aligned}$	$0 \infty \rightarrow 0 \%$ $\infty \infty$	vーロのか $\dot{\infty} \dot{\infty} \times \infty$	～～Oのの ヘinini－	$\dot{j}_{\infty}^{\infty} \dot{j} \dot{j}$	
		$\begin{aligned} & \text { N-M~g } \\ & +++++ \\ & 00000 \end{aligned}$	얜응ㅇ $+++++$ 00000	$\begin{aligned} & \text { nag in } \\ & \text { + + + + } \\ & 00000 \end{aligned}$	느응우눈 ＋＋＋＋＋ OH－HCH	ㅇNN요 ＋＋＋＋＋
		오́	$\because \infty \infty \infty$ ท		～oo～レ $\dot{\infty} \dot{\infty} \dot{\infty} \dot{\sim} \dot{\sim}$	
	 $+++++$ 00000	ㄱํํㄴํ은 $\begin{aligned} & +++++ \\ & 00000 \end{aligned}$	은요영 $+++++$ 00000	$\begin{aligned} & \text { ngino } \\ & +++++ \\ & 0-1+r-1 \end{aligned}$		겨요N옹 $\begin{gathered} +++++ \\ +-1-1+1 \end{gathered}$
	மi in in			が○न， $\dot{\infty} \dot{\infty} \dot{\infty} \dot{+} \dot{\infty} \dot{\infty}$		
	$\left\lvert\, \begin{aligned} & 8 \text { NTNN N } \\ & +++++ \\ & 00000 \end{aligned}\right.$	으역ㄱㄴ $\begin{aligned} & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { Ung 능 } \\ & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & 8 \div 82 \pi \\ & +++4+ \\ & 0000 \end{aligned}$		으읭ㅇ $\begin{gathered} +++++ \\ H-1+r-1 \end{gathered}$

Table 16．－－Profiles of normal section C－3－－Continued

June 14， 1951		July 18， 1951		Aug．3， 1951		Sept．6， 1951		Apr．1， 1952		May 8， 1952		June 19， 1952		Sept．26， 1952	
Station	Altitude														
$1+55$	83.78	1＋69	85.4	$1+45$	82.2			$1+70$	82.0					$1+75$	84.6
$1+60$	83.55			$1+50$	80.9			$1+75$	83.1		．．．．．．．．．				
$1+65$	83.41			$1+55$	81.6			$1+78$	84.7						
$1+70$	83.60			$1+60$	81.7										
$1+73$	85.20			$1+65$	82.6										
$1+80$	86.27			$1+70$	84.2										
$1+83$	88.05			$1+76$	85.2										
$1+85$	90.95			$1+79$	86.3										
	．．．．．．．．			$1+81$	88.5										

Table 17．－－Profiles of normal section C－4

$\underset{\sim}{N}$				士 $-2 n$ $\sim \infty \sim \infty$ $\infty \infty \infty$
\circ $\stackrel{\circ}{0}$ 0 0				$\begin{aligned} & \text { ing in } \\ & ++++ \\ & 0000 \end{aligned}$
$\stackrel{N}{\sim}$	\underbrace{n}_{n}		ทino－－－ $\infty \infty \infty \infty$	nnor $\underset{\infty}{\infty} \underset{\infty}{\infty}$
$\stackrel{\text { ® }}{\substack{\text { ® } \\ \hline}}$		$\begin{aligned} & \text { ONGNN} \\ & +++++ \\ & 00000 \end{aligned}$	NㅡㅋㅋN $+++++$ 00000	$\mathfrak{\sim} \mathfrak{\sim} \approx$ $\begin{aligned} & ++++ \\ & 0000 \end{aligned}$
$\stackrel{\sim}{n}$	\hat{y}	Nーコーコロ ヘัェッ ェ $\infty \infty \infty \infty$	мю мm＠ ヘi－i～i $\infty \infty \infty \infty$	
$\begin{aligned} & \mathbf{\infty} \\ & \stackrel{\omega}{\Sigma} \\ & \hline \end{aligned}$		$\left\lvert\, \begin{array}{ll} \infty & 90 \\ 0 & 0 \\ +1 & +++ \\ 0 & 0 \\ 0 & 0 \end{array}\right.$	$\begin{aligned} & 0 \text { 용ㅇㅇ } \\ & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { ng in } \\ & +1+ \\ & 0000 \end{aligned}$
$\underset{\sim}{\sim}$			MMN～～ ふ்ற்ベベ $\infty \infty \infty \infty \infty$	
穻	$\begin{array}{\|c\|} \hline \\ \hline 0 \\ -7 \\ -7 \\ \underset{\sim}{0} \\ \vdots \\ \hline 0 \end{array}$	ownon ○ールN $+++++$ 00000	$\begin{aligned} & \text { 응의요 } \\ & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { Lng in } 0 \\ & ++++ \\ & 0000 \end{aligned}$
$\stackrel{\rightharpoonup}{\mathrm{A}}$		$\infty 909 \infty$ ற்ற்ற்ற்	ルッののの ற்ற்ヘ் $\infty \infty \infty \infty$	∞ ーレへ ェ்ヘ் $\infty \infty \infty$
0	$\left\|\begin{array}{l} g \\ -\overrightarrow{-1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$		용읙ㅇㅅㅇ $\begin{aligned} & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { Ln } 80 \text { in } 0 \\ & ++++ \\ & 0000 \end{aligned}$
$\begin{aligned} & -1 \\ & \underset{\sim}{n} \end{aligned}$		$\infty 0.0 .1 n$ －∞ $\infty \infty \infty \infty$	クツーの○。 ற்ற்ற்ற் $\infty \infty \infty \infty \infty$	$\begin{array}{ll} 0 \\ \text { Min Mn } \\ \infty \\ \infty \end{array}$
$\begin{aligned} & 00 \\ & \stackrel{0}{4} \\ & \hline 1 \end{aligned}$		$\left\{\begin{array}{l} 80080 \\ +++++ \\ 00000 \end{array}\right.$	 $+++++$ 00000	m윽ㅇㅇㅇ $\begin{aligned} & ++++ \\ & 0000 \end{aligned}$
$\begin{aligned} & \text { जn } \\ & \text { - } \end{aligned}$	\hat{y}	க்ற்ヘ்ற் $\infty \infty \infty \infty$	$\begin{array}{ccc} \mathfrak{M} \times \infty \\ \infty \\ \infty \\ \infty \\ \infty \end{array}$	
$\stackrel{\substack{2 \\ \\ \hline}}{ }$		$\begin{array}{llll} 0 & 0 & n & 0 \\ 0 & n \\ +1+4 & + \\ 0 & 0 & 0 & 0 \end{array}$	읐ํㄱㅇㅇㅇ $\begin{aligned} & +4+4+ \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { Un } 20 \text { 亿 } \\ & 444+ \\ & 0000 \end{aligned}$
－			いのポ 	$\infty \infty \infty \infty$
$\stackrel{\substack{0 \\ 0 \\ \hline \\ \hline}}{ }$	$\left.\begin{gathered} 9 \\ 0 \\ 0 \\ \hdashline-7 \\ \hdashline 0 \\ 0 \\ 0 \\ 0 \end{gathered} \right\rvert\,$	$\left\{\begin{array}{l} 808000 \\ ++++4 \\ 00000 \end{array}\right.$	$\begin{aligned} & \text { no }{ }_{\mathrm{N}}^{\mathrm{N}} \mathrm{~m} \text { n } \\ & +4+4+ \\ & 00000 \end{aligned}$	$\begin{aligned} & 9 \xrightarrow[7 n]{9} 10 \\ & ++++ \\ & 0000 \end{aligned}$

Table 18．－－Profiles of normal section $\mathbf{C - 5}-$－Continued

$\left\|\begin{array}{l} N \\ \tilde{n} \\ \underset{\sim}{2} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 3 \\ -3 \\ -1 \\ 0 \\ 0 \end{array}\right\|$		$\begin{aligned} & \text { m~J~o } \\ & \sim \infty \dot{\infty} \dot{\sim} \dot{\sim} \end{aligned}$				
$\left.\begin{gathered} \dot{Q} \\ \dot{Q} \\ 0 \\ 0 \end{gathered} \right\rvert\,$	$\left\|\begin{array}{l} 5 \\ 0 \\ -1 \\ 40 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\mathrm{n}_{\mathrm{m}}^{\mathrm{n}} \mathrm{g}^{2 n}$ へのッココ $+++++$ 00000	$\begin{aligned} & \text { ㅇnㅇ응 } \\ & +++++ \\ & 00000 \end{aligned}$				
$\left\|\begin{array}{c} \underset{\sim}{n} \\ \underset{\sim}{1} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 7 \\ -7 \\ -3 \\ -4 \\ 4 \end{array}\right\|$		$\begin{aligned} & \infty \infty .15 \\ & \dot{8} \dot{0} \dot{8} \dot{8} \dot{8} \end{aligned}$		nomm 8in mix	$\vdots \vdots \vdots$	
©	$\left\|\begin{array}{l} 5 \\ .0 \\ -4 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	NN～N゙き $+++++$ 00000	$\begin{aligned} & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & N \sim \infty \sim \infty \\ & N++++ \\ & +0000 \end{aligned}$	$\begin{aligned} & \text { Noㅇo } \\ & ++++ \\ & 0-1+r \end{aligned}$	$\vdots \vdots:$	
$\left\|\begin{array}{c} \tilde{\sim} \\ \Omega \\ \sim \end{array}\right\|$			～レ゚のの $\dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ}$			$\begin{aligned} & \\ & \sim \\ & \sim \\ & \sim \\ & \infty \vdots \\ & \infty \vdots \\ &\end{aligned}$	
$\left.\begin{array}{\|c} \infty \\ 8 \\ \infty \\ \mathbf{m} \end{array} \right\rvert\,$		oNNN $1+++++$	$\begin{aligned} & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & +++++ \\ & 00000 \end{aligned}$			
$\left\lvert\, \begin{gathered} n \\ \underset{\sim}{n} \end{gathered}\right.$		のがのかの シ்パンの்		$\begin{aligned} & \text { a } \\ & \text { - } \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	ㄴㅇN． －iN்ヘ்ヘ்	∞ ¢ ：	\vdots \vdots \vdots \vdots
$\left\|\begin{array}{c} \dot{c} \\ \mathbf{c} \end{array}\right\|$	$\left\|\begin{array}{c} 5 \\ -0 \\ -8 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	 + ＋＋＋＋ 00000	$\begin{aligned} & \text { 응요요 } \\ & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { n } 8_{n}^{n} 80 \\ & +++++ \\ & 000+1 \end{aligned}$:
$\left\|\begin{array}{c} 1 \\ \underset{\sim}{2} \\ - \end{array}\right\|$			$\begin{aligned} & 0 \text { N-7 N N } \\ & \dot{80} \dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ} \end{aligned}$		ー～～OO கicicicic		\vdots \vdots \vdots \vdots
$\left\|\begin{array}{l} 0 \\ \stackrel{0}{\Omega} \\ 0 \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{gathered} \substack{0 \\ .0 \\ \underset{\sim}{0} \\ \stackrel{0}{0} \\ \stackrel{1}{2} \\ \hline} \end{gathered}\right.$	nomon $+++++$ 100000	은ㅅㅇ응 $\begin{aligned} & +++++ \\ & 00000 \end{aligned}$	no no $+++++$ 00000	$\begin{aligned} & \text { 8응ㅋN } \\ & +++++ \\ & H-1+H \end{aligned}$		$\vdots \vdots \vdots \vdots$ ！
$\left\|\begin{array}{c} r_{1}^{1} \\ -1 \end{array}\right\|$		ルートコ～ 		$\begin{aligned} & \text { Ho } 00 \\ & \infty \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$			
追		$\begin{array}{llll} \text { nimo } & \text { N } \\ 0 & \text { n } \\ +1 & ++++ \\ 0 & 0 & 0 & 0 \end{array}$	손옥 $+++++$ 00000	$\begin{aligned} & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { Qinging } \\ & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { ng no n } \\ & \text { and } \\ & +++++ \\ & 0-1 H-1+ \end{aligned}$	
$\left\lvert\, \begin{gathered} \stackrel{\sim}{n}^{-1} \\ \underset{\sim}{2} \end{gathered}\right.$		AMM	$\begin{aligned} & \because 00.3 \\ & \dot{0} \dot{0} 9000 \end{aligned}$	$\begin{aligned} & 7 n \\ & \dot{\infty} \dot{\circ} \dot{\infty}-\infty \\ & \infty \end{aligned}$		$0 \propto \infty \infty \dot{m}$ 	$\vdots \vdots \vdots!$
$\left\|\begin{array}{l} -1 \\ 3 \\ 3 \\ 3 \end{array}\right\|$	$\left\|\begin{array}{c} a \\ .0 \\ -\overrightarrow{0} \\ \underset{0}{0} \\ \stackrel{0}{0} \end{array}\right\|$	$\begin{aligned} & \text { Nan ing } \\ & +++++ \\ & 00000 \end{aligned}$	 ＋＋＋＋＋ 00000	$\begin{aligned} & \text { ㄴN요 } 8 \\ & 4++++ \\ & 00000 \end{aligned}$	ng ning inn $_{n}^{n}$ ＋＋＋＋＋ 0 HHH	\＆NㅜNN 	$\vdots: ~: ~$
$\left\|\begin{array}{c} 1 \\ i \\ 9 \\ -1 \end{array}\right\|$				Nが№nㄴN 			
$\left.\begin{array}{c} \stackrel{0}{3} \\ \underset{5}{3} \end{array}\right)$		ngㅇnm $+++++$ 100000	$\begin{aligned} & 9 \ln ^{2} \ln _{8}^{8} \\ & ++++4 \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { NONOin } \\ & ++++4 \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { Qinging } \\ & ++++4 \\ & 00 H-H \end{aligned}$		극Nㅇ ＋＋＋＋＋ HHCH

Table 19.--Profiles of normal section C-6--Continued

June 14, 1951		July 18, 1951		Aug. 3, 1951		Sept. 6, 1951		May 8, 1952		June 19, 1952		Sept. 26, 1952	
Station	Altitude												
$1+10$	79.6	$1+45$	79.8	$1+36$	79.1	$1+66$	79.9	$1+60$	78.88	$1+35$	78.58	$1+55$	77.39
$1+15$	79.6	$1+50$	80.1	$1+42$	79.1	$1+67$	80.7	$1+64$	78.98	$1+38$	78.88	$1+60$	78.19
$1+20$	79.1	$1+55$	79.8	$1+44$	79.3	.		$1+66$	79.48	$1+4$	78.08	$1+65$	79.59
$1+25$	78.9	$1+60$	79.3	$1+50$	79.2	-		$1+68$	80.48	$1+45$	78.98	$1+67$	80.29
$1+30$	79.2	$1+65$	79.8	$1+52$	79.3	-	$1+50$	78.58	.	
$1+35$	79.3	$1+68$	80.6	$1+60$	79.6	,				$1+54$	79.08	
$1+40$	79.3	.		$1+66$	80.5	
$1+45$	79.4	$1+70$	81.8	-				
$1+50$	79.7	$1+72$	82.2	-			
$1+55$	79.2	$1+76$	81.6
$1+60$	79.5	:.........					
$1+65$	79.6			
$1+67$	80.3	-	-	-						
$1+67$	80.6	-	\cdots							
$1+70$	81.1 $\quad .$.	-	
$1+75$	82.1					.							
$1+80$	83.0												
$1+90$	85.2									

\footnotetext{
Table 20.--Profiles of normal section C-7

June 14, 1951		July 18, 1951		Aug. 3, 1951		Sept. 6, 1951		Apr. 1, 1952		May 8, 1952		June 19, 1952		Sept. 26, 1952	
Station	Altitude														
$0+00$	83.98	0+22	79.0	$0+00$	83.8	$0+18$	79.3	0+19	79.2	0+21	78.9	0+24	78.6	0+25	78.2
$0+\mathrm{O}_{4}$	82.68	$0+25$	78.5	$0+05$	82.1	$0+20$	78.7	$0+22$	79.0	$0+25$	78.6	$0+27$	78.4	$0+30$	78.1
$0+06$	80.85	$0+30$	78.1	$0+08$	80.5	$0+21$	79.3	$0+25$	79.1	$0+30$	77.5	$0+32$	77.5	$0+35$	77.9
$0+10$	79.89	$0+35$	77.9	$0+11$	80.0	$0+25$	78.4	$0+26$	78.9	$0+35$	76.6	$0+37$	76.8	$0+40$	77.8
$0+15$	79.31	$0+40$	77.8	$0+13$	80.3	$0+30$	77.5	$0+30$	77.4	$0+40$	76.6	$0+42$	76.7	$0+45$	77.6

Table 21.--Profiles of normal section C-8

June 14, 1951		July 18, 1951		Aug. 3, 1951		Sept. 6, 1951		Apr. 1, 1952		May 8, 1952		June 19, 1952		Sept. 26, 1952	
Station	Altitude														
0-10	83.14	0+07	77.2	$0+00$	81.1	$0+06$	77.4	$0+07$	77.2	$0+06$	77.2	$0+07$	76.9	$0+07$	76.2
0-05	82.24	$0+10$	76.4	$0+02$	80.3	$0+10$	75.9	$0+08$	76.3	$0+07$	76.6	$0+09$	76.0	$0+10$	76.1
$0+\infty$	81.18	$0+15$	76.	$0+05$	78.6	$0+15$	75.6	$0+10$	75.5	$0+10$	75.9	$0+14$	75.9	$0+15$	75.4

Table 21.--Profiles of normal section C-8--Continued

Table 22．－－Profiles of normal section C－9

	$0 \infty 0 \rightarrow \sim$ ベホN゙NN	NHース กํํํํํํํํ	온プッ 	ツツッフコー ำำำำำ		
	t＋＋＋＋ 00000	$+t+t+$ 00000	$\begin{aligned} & \text { OnONO } \\ & ++t+t \\ & 00000 \end{aligned}$			nomom ヘッゴール ＋＋＋＋＋ H－HH－
			ヘーコープロ 	กี่ํํํํํํ	～ロッグす。 ヘ่ำกำํㅗㄷ	
		t＋t＋t 00000	 ＋＋＋＋＋ 00000	ががするす ＋＋＋＋＋ 0000 r	$\begin{aligned} & \text { aja }{ }^{\circ} \text { Na } \\ & +++++ \\ & H-1 H H-1 \end{aligned}$	
				Mッ Mo？ 논ํํํํํํ		
	$\left\lvert\, \begin{aligned} & \text { N-N } \\ & -10 \\ & +1+++ \\ & 0 \\ & 0 \end{aligned}\right.$	t＋t＋t＋ 00000	 ＋＋＋＋＋ 00000		$\begin{aligned} & \text { ngin } \mathrm{N}_{\mathrm{N}}^{\mathrm{N}} \mathrm{~N} \\ & ++++ \\ & \mathrm{HH}-1 \end{aligned}$	
	0∞－ 	OO～TO ำ่ำกำ				
	$\begin{array}{ll} \text { N- } & 0 \\ -1 & \infty \\ +1 & 0 \\ +1 & + \\ 0 & 0 \end{array}$	nomon NMmココ ＋＋＋＋＋ 00000	운ํㅇํㅇํㅇ t＋t＋t＋ 00000	$\begin{aligned} & \text { NOLOROM } \\ & +\infty+++ \\ & +0000 \end{aligned}$	$\begin{aligned} & 8 \text { giong } \\ & +++++ \\ & +-1+1+1 \end{aligned}$	$\begin{aligned} & \text { Nong ing } \\ & +++++ \\ & \text { H-1Hin } \end{aligned}$
	மの～のか ำำ눈	$\infty \infty$ mの ∞ 				－HNNN กับ่ำำก rrar
	$\left\lvert\, \begin{aligned} & \text { Hincno } \\ & +1++++ \\ & 0 \\ & 0 \end{aligned}\right.$	t＋t＋t＋ 00000	응융요 t＋t＋＋ 00000	$\begin{aligned} & \text { no } \alpha_{2 n}^{2 n} 8_{0}^{2} \\ & ++++t \\ & 0 \text { ont } \end{aligned}$	역ㅇN융 ＋＋＋＋＋ H－HनH	мヨヨース ＋＋＋＋＋ $\mathrm{CH}-\mathrm{HHM}$
			ㄴำがす！ バベッポ	ソ ッコッッ กำำำํํ	NOOOO ำำำำำ	
		Noming ＋＋＋＋＋ 00000	＋＋＋＋＋ 00000	＋＋＋＋＋ 00000	$\begin{aligned} & \text { ng 응 } \\ & \text { O } \\ & +++++ \\ & 0-1 H H H \end{aligned}$	오N에옥 ＋＋＋＋＋ H－HHH
		～Mッツーす ำกำํํํ	2n－700 ำกำำำำ	\rightarrow 水 ต่ำำำ	ペツ ワーき 	
	MunㅇN옹 「ルNNm t＋＋＋＋ 00000	늑ㄴํㅇํㄴ ตコゴペ $+++++$ 00000	$\begin{aligned} & \text { 응읃 } \\ & ++++t \\ & 00000 \end{aligned}$		$\begin{aligned} & \text { OMONO } \\ & \text { HAN } \\ & ++t++ \\ & H-1 H-H \end{aligned}$	
		ทำกำกำกำ	づきざきま ทำกำกำำ	ジすきコゴ ペ่ำำำ	ヨヨゴココゴゴ ำกำกำำ	ヨふきヨき
	$\begin{array}{\|l} \infty \text { N M. Mun } \\ 0 \text { H. } \\ +++++ \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \text { ㅇnㅇn윽 } \\ & ++++t \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { ngingin } \\ & ++t++ \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { ㅇngin } \\ & \text { + } 8+t++ \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { ang non } \\ & +++++ \\ & 0 H r H H \end{aligned}$	$\begin{aligned} & \text { Oñ으응 } \\ & +++++ \\ & \text { HHHMH} \end{aligned}$

Table 22.--Profiles of normal section C-9--Continued

June 14, 1951		July 18, 1951		Aug. 3, 1951		Sept. 6, 1951		Apr. 1, 1952		May 8, 1952		June 19, 1952		Sept. 26, 1952	
Station	Altitude	Station	A1titude	Station	Altitude	Station	Altitude								
$1+45$	75.54	$1+60$	74.6	$1+45$	74.8	$1+60$	75.2	$1+50$	74.5	$1+55$	74.4	$1+59$	74.2	$1+60$	73.7
$1+50$	75.24	$1+65$	74.9	$1+50$	74.8	$1+65$	75.5	$1+54$	75.4	$1+60$	73.9	$1+64$	74.8	$1+65$	74.6
$1+55$	74.84	$1+70$	74.8	$1+55$	74.8	$1+70$	76.0	$1+58$	75.8	$1+65$	74.1	$1+69$	75.0	$1+70$	75.1
$1+60$	74.74	$1+75$	74.9	$1+60$	74.9	$1+75$	76.2	$1+60$	75.8	$1+70$	73.7	$1+74$	75.0	$1+75$	75.3
$1+65$	75.04	$1+80$	75.1	$1+65$	75.2	$1+80$	76.3	$1+65$	76.1	$1+75$	74.5	$1+79$	75.3	$1+80$	75.3
$1+70$	74.64	$1+85$	75.5	$1+70$	75.3	$1+85$	76.5	$1+70$	76.2	$1+80$	75.1	$1+84$	75.3	$1+85$	75.2
$1+75$	74.84	$1+90$	75.5	$1+75$	75.7	$1+90$	76.5	$1+80$	76.3	$1+85$	75.7	$1+89$	75.6	$1+90$	75.4
$1+80$	74.84	$1+95$	75.5 .	$1+80$	75.6	$1+95$	76.4	$1+90$	76.2	$1+90$	75.6	$1+94$	75.6	$1+95$	75.7
$1+85$	74.94	$2+00$	75.6	$1+85$	75.6	$2+00$	76.3	$1+95$	75.9	$1+95$	75.7	$1+99$	75.5	$2+\infty$	75.6
$1+90$	75.24	$2+05$	75.6	$1+90$	75.7	$2+05$	76.3	$2+\infty$	76.1	$2+00$	75.7	$2+04$	75.5	$2+05$	75.6
$1+95$	75.24	$2+10$	75.4	$1+95$	75.7	$2+10$	75.8	$2+05$	75.7	$2+05$	75.9	$2+09$	75.8		\cdots
$2+00$	75.14	$2+15$	75.1	$2+\infty$	75.8	$2+15$	76.0	$2+07$	76.1	$2+10$	75.7			
$2+05$	75.04	$2+16$	76.1	$2+05$	75.6	$2+17$	76.6	$2+10$	75.7	$2+15$	75.8	-
$2+10$	74.84			$2+10$	75.3 ${ }^{\text {a }}$	$2+17$	76.1	$2+15$	76.1
$2+15$	75.34	-.......		$2+15$	75.1		-.......	-•......	-......	-	\cdots	
$2+15$	76.14			$2+16$	76.0										
$2+16$	76.14	-		$2+18$	77.2										
$2+20$	78.84	… $\cdot \cdots$	\cdots ${ }^{\text {a }}$

Table 23．－－Profiles of normal section C－10

		$\begin{gathered} M \underset{N}{N} \underset{N}{N} \\ \end{gathered}$				
		nommong NMmgy $\begin{aligned} & ++++t+ \\ & 00000 \end{aligned}$	여응응 ＋＋＋＋＋ 00000	$\begin{aligned} & \text { NOMON } \\ & +\infty \infty N \\ & ++++t \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { 8응ㅇN } \\ & +++++ \\ & \text { HHrrn } \end{aligned}$	
	$\begin{aligned} & N M \infty N \\ & \dot{N} N \dot{N} \end{aligned}$					
		MッヅヨN ＋＋＋＋＋ 00000	$\begin{aligned} & \text { NONN } \\ & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & +++++ \\ & 0000-1 \end{aligned}$	※N～NN ＋＋＋＋＋ $\rightarrow+\boldsymbol{H}$	씈N $\begin{aligned} & +++++ \\ & \text { MनH H } \end{aligned}$
			$\underset{\sim}{r} \underset{\sim}{n} \underset{N}{N}$			
		か엇 N～ ＋＋＋＋＋ 00000	＋＋＋＋＋ 00000	№으여N ＋＋＋＋＋ 00000	8 닝N응 ＋＋＋＋＋ $0000-1$	nginn in ＊＋＋＋＋ तन \boldsymbol{H}
					－arvN NNMNM	$\begin{aligned} & 0990 \infty \\ & \text { NANA } \end{aligned}$
		NNㅇㅇㅇㅇㅇ ＋＋＋＋＋ 00000	$\begin{aligned} & \text { ㅇㅇㅇN } \\ & +++++ \\ & 00000 \end{aligned}$		 $+++++$ － $\mathrm{H} \boldsymbol{+ 1}+\boldsymbol{H}$	$\begin{aligned} & \text { 용ㅇㅇㅇㅇ } \\ & +++++ \\ & -1+r-1+r \end{aligned}$
	응nNN ＋＋＋＋＋ 00000	윽역ำ ＋＋＋＋＋ 00000	$\begin{aligned} & \text { Ingingin } \\ & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & 8_{\infty}^{2 n} \Omega_{0}^{2} 8 \\ & +++++ \\ & 0000-1 \end{aligned}$		
	ず8 ＋＋＋＋＋ 00000	ㅇNN윽 ＋＋＋＋＋ 00000	ㄴํํํํㅇํㄴ ＋＋＋＋＋ 00000	 ＋＋＋＋＋ 00000		
	$\begin{aligned} & \rightarrow \dot{A} \underset{\sim}{c} \\ & \text { NNN } \end{aligned}$	$\dot{\sim}$	$\underset{\sim}{M} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim}$	$\begin{aligned} & \dot{\infty} \dot{\tilde{N}} \underset{\sim}{n} \dot{\sim} \dot{\sim} \end{aligned}$		
	aㅇNㅇN －नnN ＋＋＋＋＋ 00000	$\begin{aligned} & \text { 요읙ㅇ } \\ & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { Un응N } \\ & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & 8 \ln \ln _{2} 8 \\ & +++++ \\ & 0000+1 \end{aligned}$	$\begin{aligned} & \text { MOMON } \\ & 0 \text { NAN } \\ & +++++ \\ & \text { H-H H } \end{aligned}$	
		쿠웄ㅆm ตัตNํ				
	$\begin{aligned} & \text { n5ogn } \\ & ++4++ \\ & 00000 \end{aligned}$	 $+t+++$ 00000	논넁ㅇ + ＋＋＋＋ 00000	$\begin{aligned} & \text { no용N } \\ & +++++ \\ & 00000 \end{aligned}$	$\begin{aligned} & \text { 응 } 809 \\ & +++++ \\ & 00-1+n \end{aligned}$	$\begin{aligned} & \text { nㅇNㅇN } \\ & +++++ \\ & +-1+r+1 \end{aligned}$

Table 23.--Profiles of normal section C-10--Continued

June 14, 1951		July 18, 1951		Aug. 3, 1951		Sept. 6, 1951		Apr. 1, 1952		May 8, 1952		June 19, 1952		Sept. 26, 1952	
Station	Altitude														
$1+40$	73.61	$1+55$	73.9	$1+45$	73.1	$1+55$	73.9	$1+87$	74.5	$1+30$	73.9	$1+57$	73.4	$1+50$	74.0
$1+45$	73.50	$1+60$	73.4	$1+50$	73.2	$1+60$	74.1			$1+35$	73.9	$1+62$	72.9	$1+55$	73.6
$1+50$	73.55	$1+65$	73.5	$1+55$	74.1	$1+65$	74.2			$1+40$	73.1	$1+67$	72.5	$1+60$	73.3
$1+55$	73.14	$1+70$	72.9	$1+60$	74.1	$1+70$	74.1			$1+45$	73.5	$1+72$	72.6	$1+65$	72.4
$1+60$	73.20	$1+75$	73.4	$1+65$	73.9	$1+75$	34.1			$1+50$	73.5	$1+77$	73.0	$1+68$	71.6
$1+65$	72.98	$1+80$	72.9	$1+70$	74.0	$1+80$	74.0			$1+55$	73.4	$1+82$	72.2	$1+70$	72.2
$1+70$	73.13	$1+85$	73.1	$1+75$	74.0	$1+85$	73.6		$1+60$	73.5	$1+87$	72.6	$1+75$	72.4
$1+75$	72.54	$1+88$	72.9	$1+80$	73.6	$1+87$	73.3			$1+65$	73.3	$1+89$	73.3	$1+80$	72.6
$1+80$	72.69	$1+89$	74.4	$1+85$	73.7	$1+89$	75.4			$1+70$	72.6	$1+90$	74.2	$1+85$	72.7
$1+85$	72.34		$1+89$	74.6			$1+75$	71.3	$1+90$	73.0
$1+87$	74.42			$1+90$	75.6			$1+80$	70.6	
$1+88$	75.11				$1+85$	71.0
$1+90$	76.46						$1+90$	73.9	
....... ${ }^{\text {a }}$				$1+90$	74.5 \cdot.......

Table 25.--Streamflow measurements, Niobrara River near Cody, Nebr., normal sections C-2 and C-6
(Bureau of Reclamation employees making measurements were H. Kargi, J. M. Lara,
C. R. Miller, D. B. Raitt, R. Steele, and G. J. Whitsel]

Date
Made by

1 Staff gage at measuring section.
2 Water discharge measurement included only 16 verticals.

Table 26.--Particle-size analyses of stream-bed material, normal sections $\mathrm{C}-1$ to $\mathrm{C}-10$
/Method of analysis: sieve. one sample at each station/

Date	Bed material							Location	
	Percent finer than indicated size,in millimeters								
								Section	Station
	0.062	0.125	0.250	0.500	1.000	2.000	4.000	Section	station
$\text { june } \frac{1951}{14 . . .}$	1		34	89	95	98	99		
	1	8	78	99	100	C-1	71
	4	45	95	99	100	c-1	100
	\ldots	1	22	78	90	95	99	c-2	41
	\ldots	6	52	96	99	100	\ldots	c-2	63
	\ldots	2	33	92	98	99	100	C-2	91
	.	1	32	90	97	99	99	C-3	75
	...	3	29	83	95	99	100	C-3	115
	.	2	37	96	99	99	100	C-3	142
		3	53	98	100		c-4	42
	..	2	43	94	98	99	99	c-4	80
	.	2	39	95	99	100	C-4	113
	2	40	98	100	\ldots	c-5	34
	...	1	24	91	98	100	C-5	53
	1	20	94	99	100	\ldots	c-5	100
	..	3	48	96	99	99	100	c-6	60
	.	1	36	84	98	99	100	c-6	90
	\ldots	1	28	92	99	100	c-6	130
	3	47	84	93	98	99	c-7	44
	..	2	29	98	100			c-7	70
	.	2	25	91	98	99	100	C-7	90
	\ldots			92	98	99	100	c-8	31
		2	43	94	97	99	100	C-8	50
	1	27	83	94	98	100	c-8	74
	\cdots	3	37	84	91	95	98	c-9	38
	1	23	89	98	99	100	C-9	90
	\ldots	3	31	87	95	97	99	C-9	175
		36	88	97	99	100	c-10	31
	\ldots	6	59	96	97	97	97	C-10	50
		4	52	94	98	99	100	C-10	155
June 15...	.	2	31	94	99	100	\ldots	c-2	29
	,	3	50	97	99	99	99	c-2	63
		2	34	88	96	98	100	$\mathrm{C}-2$	111
	1	12	70	98	100			c-6	51
	.	2	42	98	100	c-6	110
	2	31	79	90	95	99	c-6	145
July 18...		3	41	94	98	99	100	c-1	46
	4	4	47	96	99	100	\ldots	c-1	77
	2	39	95	99	99	100	C-1	112
			46			100			
	...		31	78	90	96	98	c-2	68
	\ldots	4	55	93	98	99	100	C-2	111
	1	46	97	100			c-3	77
	\ldots	3	48	90	96	98	100	c-3	104
	\ldots	1	26	87	96	97	99	c-3	138

TABLES OF BASIC DATA
Table 26.--Particle-size analyses of stream-bed material, normal sections
C-1 to C-10--Continued

Date	Bed material							Location	
	Percent finer than indicated size, in millimeters								
$\frac{1951--C o n .}{\text { July } 18 \ldots}$									
		2	32	85	93	96	98	c-4	62
	\ldots	3	47	94	98	98	99	c-4	95
	1	2	26	90	98	99	99	c-4	114
	\ldots	2	52	94	98	99	100	c-5	37
	1	25	92	98	100	C-5	56
	2	2	32	81	91	95	100	C-5	76
	4	10	52	94	98	99	99	c-6	65
	2	33	87	94	96	96	c-6	105
	\ldots	1	26	96	99	100	c-6	140
	\ldots	2	30	76	91	96	99	C-7	50
	\ldots	1	32	92	98	99	100	C-7	75
	1	3	49	99	100	C-7	91
		3	37	90	98	99	100	c-8	26
	\cdots	4	40	82	88	94	100	C-8	57
	1	18	89	97	98	99	C-8	84
	\cdots	2	35	93	99	99	100	C-9	60
	3	4	49	96	100			C-9	125
		2	40	94	98	99	100	C-9	175
	1	1	34	94	98	99	99	C-10	48
	1	2	38	90	96	98	100	C-10	85
		2	29	92	98	99	100	C-10	165
Aug. 3....			52		100			C-1	
	1	7	47	96	99	100	\ldots	C-1	80
		1	12	76	95	98	99	C-1	110
	\ldots	1	21	85	94	96	98	$\mathrm{c}-2$	36
	1	19	82	99	100		C-2	60
	1	3	36	94	98	99	100	$\mathrm{C}-2$	110
	\cdots	2	45	97	98	98	99	c-3	105
	1	1	32	93	98	98	99	c-3	130
		1	12	64	84	92	96	c-3	155
	1	4	67	97	100		\ldots	c-4	40
	1	3	42	96	99	100	\ldots	c-4	70
	1	27	91	97	99	99	C-4	105
	1	2	33	78	91	96	99	c-5	40
	1	2	44	98	100			C-5	75
	1	6	73	93	97	99	100	C-5	105
	1	3	43	97	100			c-6	101
	\cdots		37	71	92	96	98	C-6	124
			24	66	80	93	99	c-6	144
	1	2	31	96		100		C-7	47
	\ldots	3	44	94	98	99	100	C-7	71
	1	2	65	99	100		\ldots	C-7	93
	1	2	57	96	99	100		c-8	25
	\cdots	3	64	97	99	99	100	c-8	50
	1		48	99	100			c-8	75

Table 26.--Particle-size analyses of stream-bed material, normal sections $\mathrm{C}-1$ to $\mathrm{C}-10$--Continued

Date	Bod material							Location	
	Percent finer than indicated size,in millimeters								
								Section	Station
$\frac{1951-- \text { Con. }}{\text { Aug. } 3 \ldots \ldots}$									
	\ldots		38	88	96	99	100	C-9	64
		6	81	100	\ldots	C-9	103
	.	4	62	98	100	C-9	143
	2	4	63	98	100	c-10	43
	..	3	41	90	97	98	99	C-10	86
	1	2	35	92	99	99	100	c-10	130
Sept. 6...	1	1	36	89	97	98	100	C-1	40
	2	2	17	61	78	87	94	C-1	75
		1	30	89	96	99	100	C-1	110
	0	2	38	95	100	…0	\cdots	C-2	
	3 2	$?$	47	90 96	98 99	99 99	100 100	C-2 $\mathrm{C}-2$	58 100
		2	55	99	100		C-3	75
	1	2	15	70	81	87	90	c-3	115
	1	1	14	82	94	97	100	C-3	150
	..	1	4	49	92	97	98	c-4	65
	1	2	26	90	99	100	c-4	94
	1	13	78	96	97	98	C-4	110
	1	7	55	98.	100	c-5	30
	1	2	44	99	100	\ldots	c-5	60
	1	4	43	97	100	c-5	90
	-	1	10	83	96	98	99	c-7	40
	...	3	64	100	C-7	70
	\ldots	1	50	98	100	c-7	95
	4	10	71	99	100	\ldots	C-8	30
	1	3	48	98	100	c-8	60
	1		35	98	99	100	\cdots	C-8	85
	6	9	32	89	97		100	c-9	55
	..	1	31	94	97	98	100	C-9	100
	2	11	72	99	100	C-9	140
	3	3	50	96	98	98	99	c-10	50
	3	5	62	99	100			C-10	95
	1	16	84	97	98	100	C-10	145
$\frac{1952}{\text { Apr. }} 1 . \ldots$									
	1	7	77	99	99	100	\ldots	C-1	34
	0	6	50	90	99	100	.	C-1	105
	3	5	38	97	99	100	\cdots	$\mathrm{C}-1$	135
	1	7	49	98	99	99	100	c-2	42
	0	2	40	97	100	c-2	85
	1	6	60	100	C-2	112
	1	2	35	89	98	99	100	c-3	65
	0	2	59	98	100			C-3	130
	6	10	37	91	98	99	100	C-3	167
		19	86	100		\ldots	c-4	35
	0	5	55	99	100			C-4	95
	0	2	15	87	98	99	100	C-4	121

Table 26.--Particle-size analyses of stream-bed material, normal sections $\mathrm{C}-1$ to $\mathrm{C}-10-$-Continued

Date	Bed material							Location	
	Percent finer than indicated size, in millimeters								
	0.062	0.125	0.250	0.500	1.000	2.000	4.000	Section	Station
$\frac{1952--C o n .}{\text { Apr. I.... }}$									
	3	12	40	88	98	100	C-5 ${ }^{\text {a }}$
	0	3	36	96	100 \cdot.	c-5	. \cdot.
	0	2	50	99	100	\ldots	C-5
	1	1	6	63	80	91	98	C-7	40
	1	5	63	99	100	\ldots	C-7	65
	0	2	49	99	100	-	- .	C-7	100
	0	4	36	97	100	-••••	C-8	25
	1	2	45	99	100 ${ }^{\text {a }}$	C-8	45
	-•	0	10	88	95	96	98	C-8	95
	3	14	34	97	100	-.....	...	C-9	-......
	2	10	52	93	99	100	...	C-9
	24	62	96	100	-....	. \cdot. ${ }^{\text {a }}$	C-9
	0	2	25	93	98	99	99	C-10	30
	0	2	35	95	100	-....	C-10	100
	4	5	52	99	100	-•...	C-10	155
May 8.....	0	2	45	95	98	100	C-1	
	1	2	48	97	100	C-1	110
			22	75	88	94	99	C-2	30
	0	3	41	94	98	99	99	$\mathrm{C}-2$	77
	1	2	50	96	99	99	100	C-2	113
	0	3	51	97	99	100	\cdots	C-3	48
	1	4	49	92	96	97	99	C-3	110
	0	4	55	98	100	-•••	C-3	143
	0	2	42	91	97	99	100	C-4	40
	0	2	31	84	92	95	97	C-4	104
	1	3	31	85	95	97	98	C-4
	2	2	35	87	94	97	98	C-5	35
	2	6	20	41	45	48	53	C-5	85
	0	2	42	93	98	99	100	C-5	-.....
	2	2	24	88	96	96	97	c-6	95
	0	1	36	91	98	99	100	c-6	120
	0	2	25	82	92	96	99	C-6	143
	0	2	41	97	99	99	100	C-7	45
	0	3	34	90	97	98	100	C-7	69
	0	1	30	87	96	98	99	C-7	93
	2	3	24	86	95	97	98	C-8	28
	0	2	40	93	98	98	99	C-8	56
	2	2	27	82	94	96	98	C-8	84
	1	3	37	83	93	97	99	C-9	55
	0	2	27	80	91	95	98	C-9	110
	1	2	17	82	92	93	94	C-9	165
	1	3	41	88	96	98	100	C-10	55
	1	2	41	87	95	97	98	C-10	110
	2	2	39	92	98	99	100	C-10	165

182 COMPUTATIONS OF TOTAL SEDIMENT DISCHARGE

Table 26.--Particle-size analyses of stream-bed material, normal sections $\mathrm{C}-1$ to $\mathrm{C}-10$--Continued

Date	Bed material							Location	
	Percent finer than indicated size, in millimeters								
	0.062	0.125	0.250	0.500	1.000	2.000	4.000	Section	Station
$\frac{1952-\text { Con. }}{\text { June 19... }}$									
	0	2	52	98	99	99	99	C-1	45
	0	2	47	90	95	98	99	C-1	69
	0	3	46	93	98	99	100	C-1	110
	0	1	31	85	93	96	98	C-2	17
	0	25	60	97	99	99	100	c-2	45
	0	2	73	98	99	100	C-2	102
	0	2	50	97	99	99	100	C-3	25
	1	4	46	92	97	99	99	c-3	70
	0	7	63	96	99	100	C-3	120
	0	3	50	97	100	C-4	40
	0	7	57	92	98	99	100	C-4	61
	0	2	42	92	97	98	99	C-4	103
	0	1	25	84	93	97	99	C-5	65
	0	1	32	94	98	99	99	C-5	85
	0	1	29	89	97	99	100	c-5	112
	0	4	63	98	99	100	c-6	75
	0	1	30	87	93	97	98	C-6	110
	0	2	18	78	91	94	98	c-6	140
	0	8	44	94	99	100	C-7	30
	0	2	25	68	78	86	95	C-7	55
	0	1	26	92	98	99	100	C-7	70
	0	1	42	94	98	98	99	C-8	20
	0	1	30	88	96	98	99	C-8	50
	0	1	30	94	98	99	100	C-8	80
	0	1	24	84	96	98	100	C-9	60
	0	5	58	96	99	100	\cdots	C-9	120
	0	2	22	81	93	96	98	C-9	185
	\cdots	0	1	29	88	98	100	C-10	20
	1	8	43	87	95	97	99	C-10	95
	0	1	18	71	83	90	95	C-10	160
Sept. 26..		0	31	89	96	98	99	C-1	40
	1	8	40	77	90	96	99	C-1	95
	0	2	28	83	93	96	99	C-1	124
	0	4	46	94	99	99	100	C-2	32
	0	1	32	96	100	-••••	. \cdot. ${ }^{\text {a }}$	c-2	106
	0	1	21	68	75	85	95	c-2	120
	0	3	47	91	96	98	99	C-3	62
	0	3	56	95	98	99	100	C-3	122
	0	1	31	86	96	98	100	C-3	154
	0	2	40	95	99	100	C-4	42
	...	0	31	94	100	C-4	109
	0	1	48	97	100	-....	-....	c-4	125
	2	18	72	98	100	C-5	48
	0	2	46	94	99	100	C-5	70
	0	3	42	96	100	C-5	95

Table 26.--Particle-size analyses of stream-bed material, normal sections C-1 to C-10--Continued

Date	Bed material							Location	
	Percent finer than indicated size, in millimeters								
								Section	Station
	0.062	0.125	0.250	0.500	1.000	2.000	4.000		
Sept. 26..	0	6	57	93	97	99	99	C-6	110
	0	1	22	73	90	96	99	c-6	140
	-	0	17	69	89	93	97	C-6	155
	0	2	47	95	99	99	100	C-7	46
	0	2	55	88	92	96	98	c-7	75
	0	2	44	93	99	100	C-7	95
	0	2	45	93	98	98	- 100	C-8	32
	0	1	24	79	93	97	99	C-8	57
	0	1	31	92	98	99	100	C-8	82
	0	4	52	96	99	100	C-9	60
	0	4	72	98	100 ${ }^{\text {a }}$	C-9	135
	0	3	58	98	100	. .	-...	C-9	165
	0	1	28	87	98	99	100	C-10	30
	0	6	60	92	97	98	99	C-10	85
	0	2	31	86	95	98	99	C-10	170
$\frac{1953}{20 \ldots}$									
	0	1	31	95	98	98	99	C-2	27
	0	2	40	93	98	99	99	$\mathrm{C}-2$	45
	0	2	40	91	98	98	99	C-2	74
	0	1	37	92	98	98	99	c-2	102
	0	2	51	94	98	99	100	C-2	119
	0	1	43	98	100	. \cdot.	. . .	c-6	23
	0	2	42	99	100	C-6	35
	0	2	44	98	100	-....	c-6	4
	0	4	58	97	99	99	100	C-6	55
	0	6	52	92	98	99	100	C-6	76

Table 27.--Comparison of particle-size analyses of depth-integrated samples
$/$ Methods of analysis: S, sieve; W, in distilled water; M, mechanically dispersed; P, pipette; C, chemically dispersed $/$

Date	Time	Water discharge (cfs) 1/	Suspended sediment													$\begin{aligned} & \text { Methods } \\ & \text { of } \\ & \text { analysis } \end{aligned}$
			```Concen- tration of sample (ppm)```	Concentration of suspension analyzed (ppm)	Percent finer than indicated size, in millimeters											
					0.002	0.004	0.008	0.016	0.031	0.062	0.125	0.250	0.500	1.000	2.000	
$\text { June } \frac{1951}{152} / \ldots .$   (3)   (4)																
	10:40 a.m.	319	516							19	48	100	.	.....		SWM
	9:40 a.m.	342	1,340							10	27	100	.			SWM
	12:10 p.m.	294	345		.....	.....	.....	.....	.....	21	100	. $\cdot$.	.....	.....	$\cdots$	SWM
July $182 / \ldots$   (3)   (4)   (5)	11:00 a.m.	298	470	-.............	$\ldots$	.....	.....			14	40	100				SWM
	9:40 a.m.	310	1,200	..............	.....	.....	.....	.....	.....	8	22	67	96	100		SWM
	1:30 p.m.	278	433	..............	.....	.....	......	. $\cdot$. ${ }^{\text {a }}$	.....	12	37	93	100	$\ldots$		SWM
	12:30 p.m.	294	317		.....		.....	.....	.....	16	24	100	.....	.....	.....	SWM
$\text { Aug. } 2 \frac{2}{(3)} \cdots \cdots$	6:40 p.m.	324	742	1,160	.....	19	.....	37	......	53	66	93	100			SPWCM
	6:20 p.m.	342	1,840	..............	.....	.....	.....	.....	.....	21	34	66	96	98	99	SWM
$\text { Aug. } 3 \frac{4}{(5)} \ldots \ldots$	$10.25 \mathrm{a} . \mathrm{m}$.	314	588 608	...............	.....	30	.....	40	.....	80 35	81	100	.....	.....	.....	SPWGM
	10:15 a.m.	314	608	..............	.....	16	.....	24	.....	35	62	100	.	.....	.....	SPWCM
Sept. $63 / \ldots$$(4)$$(5)$	1:20 p.m.	722	4,750	2,370	.....	24	.....	32	.....	47	51	73	96	99	100	SPWCM
		746 650	2,760 2,720			43 32		54 40		71 60	85	98	99 300	99	99	SPWIM
	4:50 p.m.	650		2,400	26	32	37	40	46	60	74	94	100	.....	$\cdots$	SPWCM
Apr. $\frac{1952}{12 / \ldots . .}$   (3)   (4)   (5)	11:40 a.m.	662								28	56	94	100			SW
	1:15 p.m.	650	4,220	...		.....	.....							......	...	SW
	1:00 p.m.	673	1,640	1,980	7	10	13	16	20	34	62	96	100			SPWCM
	6:00 p.m.	608	1,450	3,800		11	14	16	21	37	66	96	100	…..		SPWM
May 8 2/.....$(3)$(4)$(5)$	10:45 a.m.	435	862		.....	$\ldots$	.....		$\ldots$	23	57	98	100	...		
	5:15 p.m.	400	1,700			.....	....							.	......	.....
	11:00 a.m.	406	752		.....	.....	.....			26	67	95	100	...	.....	SW
	2:50 p.m.	362	874					.....	.....	22	56	92	100	......		SW



[^6]Table 28.--Particle-size analyses of suspended sediment, point-integrated samples, sections C-2 and C-6

Method of analysis; sieve. Point velocities measured by pygmy current meter. Water discharge adjusted for difference between time of streamflow measurement and time of sampling]

Date	Time	Water discharge (cfs)	Sam-   pling   sta-   tion	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Suspended sediment							
					Sampling point			Percent finer than indicated size, in millimeters				
					$\begin{aligned} & \text { Veloc- } \\ & \text { ity } \\ & \text { (fps) } \end{aligned}$	Depth   (feet)	Concentration (ppm)					
								0.062	0.125	0.250	0.500	1.000
Section C -2												
$\frac{1953}{\text { May } 20}$												
	12:20 p.m.	383	27	1.0	3.47	0.2	394	44	85	98	100	. ....
	12:20 p.m.	383	27	1.0	3.47	. 5	649	32	72	98	100	....
	12:20 p.m.	383	27	1.0	3.31	. 7	867	24	61	96	100	.....
	12:05 p.m.	383	45	. 8	3.73	. 2	615.	31	77	98	100	.
	12:05 p.m.	383	45	. 8	3.55	.5	$762^{\circ}$	29	68	97	100	-
	11:50 a.m.	388	74	. 8	3.31	. 2	396	45	82	98	100	-
	11:50 a.m.	388	74	. 8	3.17	. 5	480	36	79	98	100	-....
	11:35 a.m.	392	102	1.6	3.17	. 3	410	40	73	97	100	. $\cdot .$.
	11:35 a.m.	392	102	1.6	2.98	. 7	614	29	60	96	100	-••••
	11:35 a.m.	392	102	1.6	2.52	1.3	801	22	53	94	100	.....
	11:20 a.m.	392	119	1.5	3.47	. 3	618	31	76	98	100	
	11:20 a.m.	392	119	1.5	3.39	. 9	847	24	68	98	100	.....
	11:20 a.m.	392	119	1.5	3.24	1.2	951	21	63	97	100	.....
Section C-6												
$\frac{1953}{\text { May } 20}$												
	2:30 p.m.	355	23	1.7	3.31	0.3	609	34	65	95	100	-•••
	2:30 p.m.	355	23	1.7	3.31	. 9	645	28	57	92	99	100
	2:30 p.m.	355	23	1.7	3.24	1.4	905	23	52	92	100	-••••
	2:45 p.m.	359	35	2.1	2.71	. 3	744	23	50	89	100	$\cdots$
	2:45 p.m.	359	35	2.1	3.10	1.1	874	20	43	89	100	- 100
	2:45 p.m.	359	35	2.1	3.17	1.8	1,080	16	37	86	99	100
	3:05 p.m.	363	44	2.3	3.17	. 3	682	30	53	93	100	-••••
	3:05 p.m.	363	44	2.3	3.04	1.2	836	21	42	88	100	-....
	3:05 p.m.	363	44	2.3	2.98	- 2.0	1,040	15	37	86	100	-....
	3:25 p.m.	367	55	2.1	2.22	. 3	468	36	64	93	100	
	3:25 p.m.	367	55	2.1	1.96	1.1	555	29	58	92	99	100
	3:25 p.m.	367	55	2.1	2.08	1.8	804	23	48	88	100	-....
	3:45 p.m.	363	76	. 8	2.04	. 2	450	38	73	98	100	
	3:45 p.m.	363	76	. 8	1.96	. 5	525	19	56	94	99	100

Table 29.--Sediment-discharge measurements, normal sections $\mathrm{C}-2$ and $\mathrm{C}-6$

Date	Time	Gage height (feet)	Water discharge (cfs) 1/	Suspended sediment		Water temperature ( ${ }^{\circ} \mathrm{F}$ )
				Mean concentration (ppm)	$\begin{gathered} \text { Discharge } \\ \text { (tons per } \\ \text { day) } \end{gathered}$	
Section C-2						
1951						
June 15..	12:10 p.m.	0.88	294	345	274	73
July 18..	1:30 p.m.	. 92	278	- 433	325	84
Aug. 3...	10:25 a.m.	1.10	314	588	499	75
Sept. 6..	12:30 p.m.	1.81	746	2,760	5,560	66
1952						
Apr. $1 .$.	1:00 p.m.	1.58	650	1,640	2,880	-.
May 8....	11:00 a.m.	1.18	430	752	870	58
June 19..	12:10 p.m.	. 78	230	262	160	64
Sept. 26.	5:50 p.m.	.77	219	255	150	58
$\text { May } \frac{1953}{20 \ldots}$	11:50 a.m.	1.12	350	596	563	63
Section C-6						
1951						
June 15..	1:20 p.m.	0.86	286	362	280	72
July 18..	12:30 p.m.	. 96	294	317	252	.......
Aug. 3...	10:15 a.m.	1.10	314	608	515	75
Sept. 6..	4:50 p.m.	1.65	650	2,720	4,770	.......
1952						
Apr. $1 .$.	6:00 p.m.	1.51	608	1,450	2,380	-•....
May 8....	2:50 p.m.	1.13	405	874	960	60
June 19..	12:10 p.m.	. 77	226	294	179	70
Sept. 26.	2:45 p.m.	. 79	226	504	308	-......
$\frac{1953}{20 .}$	3:05 p.m.	1.03	310	685	573	66

1 Not adjusted for time of travel of the water nor for possible inflow of ground water.


[^0]:    Figure 10.--Relation of $(d-y) / y$ plotted against concentration for different size ranges, gaging-station section, April 27, 1951.

[^1]:    Figure 20.--Relationship of daily average suspended-sediment discharge to daily average water discharge at contracted section from April 1948 through September 1952.

[^2]:    2 Water discharge based on only 16 measured verticals.

[^3]:    Figure 34.--Ratio of measured sediment discharge at a normal section to sediment discharge at the contracted section plotted against sediment discharge at the contracted section.

[^4]:    Figure 35.--Ratio of measured sediment discharge at a normal section to sediment discharge at

[^5]:    1/ Larger constants are used for concentrations greater than $35,000 \mathrm{ppm}$.

[^6]:    and time of sampling

